[1] R.L. Siegel, A.N. Giaquinto, A. Jemal, Cancer statistics, 2024, CA: a cancer journal for clinicians, 74(1) (2024).
[2] T.B. Kratzer, P. Bandi, N.D. Freedman, R.A. Smith, W.D. Travis, A. Jemal, R.L. Siegel, Lung cancer statistics, 2023, Cancer, 130(8) (2024) 1330-1348.
[3] S. Shamas, S. Panda, I. Sharma, Review on lung nodule segmentation-based lung cancer classification using machine learning approaches, in: Artificial Intelligence on Medical Data: Proceedings of International Symposium, ISCMM 2021, Springer, 2022, pp. 277-286.
[4] A. Halder, D. Dey, A.K. Sadhu, Lung nodule detection from feature engineering to deep learning in thoracic CT images: a comprehensive review, Journal of Digital Imaging, 33(3) (2020) 655-677.
[5] Y. Gu, J. Chi, J. Liu, L. Yang, B. Zhang, D. Yu, Y. Zhao, X. Lu, A survey of computer-aided diagnosis of lung nodules from CT scans using deep learning, Computers in biology and medicine, 137 (2021) 104806.
[6] R. Aggarwal, V. Sounderajah, G. Martin, D.S. Ting, A. Karthikesalingam, D. King, H. Ashrafian, A. Darzi, Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis, NPJ digital medicine, 4(1) (2021) 65.
[7] S. Gite, A. Mishra, K. Kotecha, Enhanced lung image segmentation using deep learning, Neural Computing and Applications, 35(31) (2023) 22839-22853.
[8] H.M. Kim, T. Ko, I.Y. Choi, J.-P. Myong, Asbestosis diagnosis algorithm combining the lung segmentation method and deep learning model in computed tomography image, International Journal of Medical Informatics, 158 (2022) 104667.
[9] A. Comelli, C. Coronnello, N. Dahiya, V. Benfante, S. Palmucci, A. Basile, C. Vancheri, G. Russo, A. Yezzi, A. Stefano, Lung segmentation on high-resolution computerized tomography images using deep learning: a preliminary step for radiomics studies, Journal of Imaging, 6(11) (2020) 125.
[10] R. Azad, M. Asadi-Aghbolaghi, M. Fathy, S. Escalera, Bi-directional ConvLSTM U-Net with densley connected convolutions, in: Proceedings of the IEEE/CVF international conference on computer vision workshops, 2019, pp. 0-0
[11] A.T. Abdulahi, R.O. Ogundokun, A.R. Adenike, M.A. Shah, Y.K. Ahmed, PulmoNet: a novel deep learning based pulmonary diseases detection model, BMC Medical Imaging, 24(1) (2024) 51.
[12] S. Kumar, H. Kumar, G. Kumar, S.P. Singh, A. Bijalwan, M. Diwakar, A methodical exploration of imaging modalities from dataset to detection through machine learning paradigms in prominent lung disease diagnosis: a review, BMC Medical Imaging, 24(1) (2024) 30.
[13] P. Kamra, R. Vishraj, S. Gupta, Performance comparison of image segmentation techniques for lung nodule detection in CT images, in: 2015 International Conference on Signal Processing, Computing, and Control (ISPCC), IEEE, 2015, pp. 302-306.
[14] S. Uzelaltinbulat, B. Ugur, Lung tumor segmentation algorithm, Procedia computer science, 120 (2017) 140-147.
[15] M.N. Saad, Z. Muda, N.S. Ashaari, H.A. Hamid, Image segmentation for lung region in chest X-ray images using edge detection and morphology, in: 2014 IEEE International Conference on control system, computing, and engineering (ICCSCE 2014), IEEE, 2014, pp. 46-51.
[16] V. Kalaria, S. Priyadarsini, Morphed Sobel Approach for Detecting Cancer Cells in Lungs, INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH, 2(2) (2014) 1751-1758-1751-1758.
[17] L. Ramos, I. Pineda, A Semiautomatic Image Processing-Based Method for Binary Segmentation of Lungs in Computed Tomography Images, SN Computer Science, 5(6) (2024) 689.
[18] M. Savic, Y. Ma, G. Ramponi, W. Du, Y. Peng, Lung nodule segmentation with a region-based fast marching method, Sensors, 21(5) (2021) 1908.
[19] V. Thamilarasi, R. Roselin, Lung segmentation in chest X-ray images using Canny with morphology and thresholding techniques, International Journal of Advance and Innovative Research, 6(1) (2019) 1-7.
[20] C. Liu, R. Zhao, M. Pang, Lung segmentation based on random forest and multiāscale edge detection, IET Image Processing, 13(10) (2019) 1745-1754.
[21] S.Y. Chong, M.K. Tan, K.B. Yeo, M.Y. Ibrahim, X. Hao, K.T.K. Teo, Segmenting nodules of lung tomography image with level set algorithm and neural network, in: 2019 IEEE 7th Conference on Systems, Process and Control (ICSPC), IEEE, 2019, pp. 161-166.
[22] S.M. Naqi, M. Sharif, M. Yasmin, Multistage segmentation model and SVM-ensemble for precise lung nodule detection, International journal of computer assisted radiology and surgery, 13 (2018) 1083-1095.
[23] G. Du, X. Cao, J. Liang, X. Chen, Y. Zhan, Medical Image Segmentation based on U-Net: A Review, Journal of Imaging Science & Technology, 64(2) (2020).
[24] X. Ma, H. Song, X. Jia, Z. Wang, An improved V-Net lung nodule segmentation model based on pixel threshold separation and attention mechanism, Scientific Reports, 14(1) (2024) 4743.
[25] X. Zhang, S. Kong, Y. Han, B. Xie, C. Liu, Lung Nodule CT Image Segmentation Model Based on Multiscale Dense Residual Neural Network, Mathematics, 11(6) (2023) 1363.
[26] P. Musa, F. Al Rafi, M. Lamsani, A Review: Contrast-Limited Adaptive Histogram Equalization (CLAHE) methods to help the application of face recognition, in: 2018 third international conference on informatics and computing (ICIC), IEEE, 2018, pp. 1-6.
[27] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-c. Woo, Convolutional LSTM network: A machine learning approach for precipitation nowcasting, Advances in neural information processing systems, 28 (2015).
[28] S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European conference on computer vision (ECCV), 2018, pp. 3-19.
[29] A.A.A. Setio, A. Traverso, T. De Bel, M.S. Berens, C. Van Den Bogaard, P. Cerello, H. Chen, Q. Dou, M.E. Fantacci, B. Geurts, Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge, Medical image analysis, 42 (2017) 1-13.
[30] G. Naidu, T. Zuva, E.M. Sibanda, A review of evaluation metrics in machine learning algorithms, in: Computer Science Online Conference, Springer International Publishing, Cham, (2023), pp. 15-25.
[31] T. Eelbode, J. Bertels, M. Berman, D. Vandermeulen, F. Maes, R. Bisschops, M.B. Blaschko, Optimization for medical image segmentation: theory and practice when evaluating with dice score or jaccard index, IEEE transactions on medical imaging, 39(11) (2020) 3679-3690.
[32] Z. Xiao, B. Liu, L. Geng, F. Zhang, Y. Liu, Segmentation of lung nodules using improved 3D-UNet neural network, Symmetry, 12(11) (2020) 1787.
[33] A. Garcia-Uceda Juarez, R. Selvan, Z. Saghir, M. de Bruijne, A joint 3D UNet-graph neural network-based method for airway segmentation from chest CTs, in: Machine Learning in Medical Imaging: 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings 10, Springer, 2019, pp. 583-591.
[34] D.D. Kadia, Advanced UNet for 3D Lung Segmentation and Applications, University of Dayton, 2021.
[35] S.N. Kumar, P.M. Bruntha, S.I. Daniel, J.A. Kirubakar, R.E. Kiruba, S. Sam, S.I.A. Pandian, Lung nodule segmentation using unet, in: 2021 7th International conference on advanced computing and communication systems (ICACCS), IEEE, 2021, pp. 420-424.
[36] D. Bhattacharyya, N. Thirupathi Rao, E.S.N. Joshua, Y.-C. Hu, A bi-directional deep learning architecture for lung nodule semantic segmentation, The Visual Computer, 39(11) (2023) 5245-5261.