[1] G. De Vaucouleurs, ‘‘Classification and morphology of external galaxies”. In:Astrophysik iv: ternsysteme/astrophysics iv: Stellar systems. Springer, Vol.53, pp.275–310, July. 1959
[2] C. J. Lintott, K. Schawinski, A. Slosar, et al, ‘‘Galaxy Zoo: morphologies derived from visual inspection of galaxies from the sloan digital sky survey”. Monthly Notices of the Royal Astronomical Society, Vol.389, No.3, pp.1179–1189, Sep. 2008
[3] C. J. Conselice, ‘‘The relationship between stellar light distributions of galaxies and their formation histories”. The Astrophysical Journal Supplement Series, Vol.147, No.1, July. 2003
[4] J. M. Lotz, J. Primack, P. Madau, ‘‘A new nonparametric approach to galaxy morphological classification”. The Astronomical Journal, Vol.128, No.1, pp.163–182, July. 2004
[5] P. Freeman, R. Izbicki, et al, ‘‘New image statistics for detecting disturbed galaxy morphologies at high redshift”. Monthly Notices of the Royal Astronomical Society, Vol.434, No.1, pp.282–295, Jun. 2013
[6] J. Vega-Ferrero, H. Domínguez Sánchez, M. Bernardi, et al, ‘‘Pushing automated morphological classifications to their limits with the dark energy survey”. Monthly Notices of the Royal Astronomical Society, Vol.506, No.2, pp.1927–1943, Sep. 2021
[7] M. Walmsley, C. Lintott, T. G´eron, S. Kruk, et al,‘‘Galaxy zoo decals: Detailed visual morphology measurements from volunteers and deep learning for 314000 galaxies”. Monthly Notices of the Royal Astronomical Society, Vol.509, No.3, pp.3966–3988, Jan. 2022
[8] R. Gupta, P. Srijith, S. Desai, ‘‘Galaxy morphology classification using neural ordinary differential equations”. Astronomy and Computing, Vol.38, No.5533, pp.100543, Jan. 2022
[9] H. Farias, D. Ortiz, G. Damke, M. J. Arancibia, M. Solar, ‘‘Mask galaxy: Morphological segmentation of galaxies.Astronomy and Computing”,Vol.33, No.100420, Aug. 2020
[10] P. H. Barchi, R. R. de Carvalho, R. R. Rosa, R. Sautter, et al, ‘‘Machine and deep learning applied to galaxy morphology-a comparative study”. Astronomy and Computing, Vol.30, No.100334, Jan. 2020
[11] H. Domínguez Sánchez's, M. Huertas-Company, M. Bernardi, D. Tuccillo, J. L. Fischer, ‘‘Improving galaxy morphologies for sdss with deep learning. Monthly Notices of the Royal Astronomical Society, Vol.476, No.3, pp.3661–3676, May. 2018
[12] M. Banerji, O. Lahav, C. J. Lintott, et al, ‘‘Galaxy Zoo: reproducing galaxy morphologies via machine learning. Monthly Notices of the Royal Astronomical Society, Vol.406, No.1, pp.342–353, July. 2010
[13] F. Ferrari, R.R. de Carvalho, M. Trevisan, ‘‘Morfometryka—a new way of establishing morphological classification of galaxies”, The Astrophysical Journal, Vol. 814, No.1, pp.55, Nov. 2015
[14] M. Abd el aziz, K. M. Hosny, I.M. selim, ‘‘Galaxies imageclassification using artificial bee colony basedonorthogonal Gegenbauer moments”, springer, Soft Comput, Vol.23, No.19, pp.9573–9583, Oct. 2019.
[15] L. Shamir, ‘‘Automatic morphological classification of galaxy images”, Monthly Notices of the Royal Astronomical Society, Vol.399, No.3, pp.1367–1372, Nov. 2009
[16] M. Marin, L.E. Sucar, J.A. Gonzalez, R. Diaz, ‘‘A Hierarchical Model for Morphological Galaxy Classification”, in: Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference, Jan. 2013
[17] M. E. Abd el aziz, I. M. selim., and X. Shengwu., ‘‘Automatic Detection of Galaxy Type From Datasets of Galaxies Image Based on Image Retrieval Approach”, Scientific Reports (www.nature.com/scientificreports) , Jun. 2017
[18] R. E. González, R. P. Muñoz, C. A. Hernández, ‘‘Galaxy detection and identi_cation using deep learning and data augmentation”, Astronomy and Computing, Vol.25, pp.103-109, Oct. 2018
[19] D. G. York, J. Adelman, J. E. Jr. Anderson, et al, ‘‘The sloan digital sky survey:Technical summary”, The Astronomical Journal, Vol.120, No.3, pp.1579-1587, Sep. 2000
[20] J. P. Gardner, J. C. Mather, M. Clampin, R. Doyon, M. A. Greenhouse, H. B. Hammel, J. B. Hutchings, P. Jakobsen, S. J. Lilly, K. S. Long, et al, ‘‘The james webb space telescope”. Space Science Reviews, Vol.123, No.4, pp.485–606, Apr. 2006
[21] N. A. Grogin, D. D. Kocevski, S. M. Faber, et al, ‘‘Candels: the cosmic assembly near-infrared deep extragalactic legacy survey”. The Astrophysical Journal Supplement Series, Vol.197, No.2, pp.39, Dec. 2011
[22] M. J. Baumstark, G. Vinci, ‘‘Spiral-Elliptical automated galaxy morphology classification from telescope images”. Astronomy and Computing, Vol. 46, No.100770, Oct. 2023
[23] K.W. Willett, C. J. Lintott, S. P. Bamford, et al, ‘‘Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey”. Monthly Notices of the Royal Astronomical Society, Vol. 435, Issue 4, pp 2835–2860, Nov. 2013
[24] P. H. Barchi, R. R. de Carvalho, R. R. Rosa, et al, ‘‘Machine and Deep Learning Applied to Galaxy Morphology - A Comparative Study”. Astronomy and Computing, Vol. 30, N. 100334, Nov. 2019
[25] S. Gharat, Y. Dandawate, ‘‘Galaxy Classification: A deep learning approach for classifying Sloan Digital Sky Survey images”, Monthly Notices of the Royal Astronomical Society, Vol.511, No.4, pp.5120–5124, Apr. 2022
[26] K. Mohale, M. Lochner, ‘‘Enabling Unsupervised Discovery in Astronomical Images through Self-Supervised Representations”. MNRAS, Vol. 530, Issue 1, pp. 1274--1295, May 2024
[27] X.Tan, ‘‘Accurate and efficient galaxy classification based on mobile vision transformer”. Applied and Computational Engineering, Vol.33(1), pp.118-125, Jan. 2024
[28] S. Dieleman, K. W. Willett, J. Dambre, ‘‘Rotation-invariant convolutional neural networks for galaxy morphology prediction”, Monthly Notices of the Royal Astronomical Society, Vol450, No.2, pp.1441–1459, Jun. 2015
[29] N. E. M. Khalifa, M. H. N. Taha, A. E. Hassanien, I. M. Selim, ‘‘Deep Galaxy: Classification of Galaxies based on Deep Convolutional Neural Networks”, Computer Vision and Pattern Recognition (cs.CV), Sep. 2017
[30] J. M. Dai, J. Tong, ‘‘Galaxy Morphology Classification with Deep Convolutional Neural Networks”.Astrophysics and Space Science, Vol. 364(4), Jul. 2018
[31] J. Y. Y. Lin, S. M. Liao, H. J. Huang, W. T. Kuo, O. H. Min Ou, ‘‘Galaxy Morphological Classification with Efficient Vision Transformer”. accepted by the NeurIPS Machine Learning and the Physical Sciences workshop, Oct. 2021
[32] J. Cao, T. Xu, Y. Deng, et al, ‘‘Galaxy morphology classification based on Convolutional vision Transformer (CvT)”. A&A,Vol. 683, pp.11, A42, Mar. 2024
[33] A. Vaswani, N. Shazeer, N. Parmar, et al, ‘‘Attention Is All You Need”. Advances in Neural Information Processing Systems 30 (NIPS 2017), Jun. 2017
[34] M. Vafaeezadeh, H. Behnam, P. Gifani, ‘‘Ultrasound Image Analysis with Vision Transformers—Review”. Diagnostics, Vol. 14, No.5, pp. 542, Mar. 2024
[35] M. Eassa, I. M. Selim, W. Dabour, P. Elkafrawy, ‘‘Automated detection and classification of galaxies based on their brightness patterns”, Alexandria Engineering Journal, Vol.61, No.2, pp.1145-1158, Feb. 2022
[36] S. Kang, M. S. Shin, T. Kim, ‘‘Galaxy Morphological Classification with Deformable Attention Transformer”, Machine Learning and the Physical Sciences workshop, NeurIPS. 2022
[37] K. Alrfou, A. Kordijazi, T. Zhao, ‘‘Computer Vision Methods for the Microstructural Analysis of Materials: The State-of-the-art and Future Perspectives”, Materials Science, Computer Science, Engineering, Jul. 2022