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Abstract : 

 

The deep gaze of humans into the night sky, aimed at uncovering the mysteries of the cosmos using 

advanced telescopes, has generated an immense volume of data. The classification of stars and galaxies 

present in these images, due to the vast amount of data, was a highly time-consuming process for 

astronomers. As a result, the "Galaxy Zoo" citizen science project, in which volunteers participated in 

the classification of this data, was introduced by researchers, significantly reducing the classification 

time. In recent decades, the introduction of machine learning and deep learning models has accelerated 

the classification of galaxies, leading to the replacement of manual classification methods with 

automated machine-based approaches. Recently, Vision Transformers (ViTs) have emerged as a 

significant innovation in machine learning, demonstrating substantial potential in various research 

fields. These models have particularly garnered attention in the analysis, detection, and classification 

of images and computer vision, due to their ability to process large datasets and learn complex patterns. 

The need to develop advanced methods for the automatic analysis of galaxy images to increase detection 

and classification accuracy in the shortest possible time motivated the current research to classify galaxy 

images from the Galaxy10 DECaLS dataset into 10 classes with an accuracy of 99.85% using the ViT 

model. The results obtained have been promising in comparison with other competitors. 
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1. Introduction 

Human advancement in constructing telescopes with varying optical wavelengths over the past few 

decades has revealed astonishing images of the cosmos. However, due to the vastness of space, only a 

tiny fraction of it has been imaged so far. The immense volume of images captured by telescopes, aimed 

at identifying celestial objects in the background of the universe, has made the task of recognizing and 

classifying them increasingly difficult and time-consuming. In 1926, individuals like Edwin Hubble 

attempted to identify luminous objects similar to stars in images under the name of galaxies. Hubble 

realized that galaxies are abundant in space, each hosting billions of stars and planets. His research on 

galaxies showed that, based on their morphology, each galaxy exhibits a distinct appearance, leading 

him to classify galaxies into three categories: elliptical, spiral, and irregular. He also identified another 

group of galaxies with unusual and unconventional shapes and appearances. Building on Hubble's 

efforts to classify galaxies, other researchers and scientists have since defined six classes for observable 

galaxies (de Vaucouleurs, 1959 [1]), which continue to be used in current research and the classification 

of cosmic observations. 

 

Galaxy morphology has become a significant area of focus for researchers in the recognition and 

classification of galaxies, leading to the introduction of various techniques such as visual crowd-sourced 

classification (Lintott [2]), automated computational methods including machine learning (Cancesis [3]; 

Lutz [4]; Freeman [5]), deep learning (Vega-Ferrero [6]; Walmsley [7]; Gupta [8]; Farias [9]; Barchi 

[10]; Domínguez [11]; Banerji [12]), and feature extraction (Ferrari [13]; Abdelaziz [14]; Shamir [15]; 

Marin [16]; Abd el Aziz [17]; González [18]; York [19]; Gardner [20]; Grogin [21]; M. J. Baumstark 

[22]). Manual classification of a large number of galaxies poses challenges such as low accuracy and 

speed. Over the past decade, machine learning and deep learning-based classifiers have achieved high 

accuracy in classifying galaxies. In some studies, these methods have even led to the identification of 

new galaxy classes (Kyle W. Willett [23]; Paulo Henrique Barchi [24]; Soroush Gharaat [25]; Koketso 

Mohale [26]; Xinrui Tan [27]). However, the implementation of these models is often complex and 

challenging, requiring significant computational resources that can be costly (Dieleman [28]; Nour 

Eldin M. Khalifa [29]; Jia Ming Dai [30]; Joshua Yao-Yu Lin [31]; Ji Cao[32]). Recently, Google 

developed a new architecture called Vision Transformer (ViT) for image classification.  

 

In this research, we utilized the ViT model for galaxy morphology classification. Our results indicate 

that ViT can exhibit competitive performance compared to CNN and other methods, especially showing 

significant capability in classifying smaller and fainter galaxies. Given the promising initial results, we 

believe that the ViT architecture could serve as a powerful tool for morphological classification of 

galaxies in next-generation surveys. 

 

2. Dataset 

 

This project utilizes the AstroNN2 dataset, which is derived from the DESI Legacy Imaging Survey, 

with labels sourced from the Galaxy Zoo project. The Galaxy10 DECaLS dataset includes 17,736 color 

images of galaxies, each with dimensions of 256×256 pixels, captured in the g, r, and z bands. These 

images are categorized into 10 different classes, obtained from the DESI Legacy Imaging Surveys. The 

dataset file includes columns for images with dimensions (256, 256, 3), along with additional metadata 

including the angle (ans), right ascension (ra), declination (dec), redshift, and pixel scale (pxscale, 

measured in arcseconds per pixel). The dataset is categorized as follows: 

 

- Class 0 (1,081 images): Disturbed Galaxies 

- Class 1 (1,853 images): Merging Galaxies 

- Class 2 (2,645 images): Round Smooth Galaxies 

- Class 3 (2,027 images): In-between Round Smooth Galaxies 

- Class 4 (334 images):    Cigar Shaped Smooth Galaxies 

- Class 5 (2,043 images): Barred Spiral Galaxies 

- Class 6 (1,829 images): Unbarred Tight Spiral Galaxies 

 
2 https://astronn.readthedocs.io/en/stable/galaxy10.html 
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- Class 7 (2,628 images): Unbarred Loose Spiral Galaxies 

- Class 8 (1,423 images): Edge-on Galaxies without Bulge 

- Class 9 (1,873 images): Edge-on Galaxies with Bulge 

 

These diverse classifications enable us to rigorously test the ViT model for accurate morphological 

classification of galaxies based on real and complex data. The dataset can also be manually compiled 

using sources such as the Hubble image set and other similar digital surveys. After preprocessing, these 

data can be used to train various models. An example of the dataset images is shown in Figure (1). 

 

 

Figure (1): Sample images of each class from Galaxy10 DECaLS Dataset 

 

3. Research Methodology and Structure 

 

In this section, we will first introduce the Vision Transformer (ViT) model to provide an understanding 

of its architecture, allowing us to explain the proposed method in detail. In the methodology section, 

using the ViT code available on Kaggle3, we will perform the classification of a galaxy dataset by 

modifying the code's parameters. The selected model will be evaluated by solving the complex and 

challenging problem of classifying 10 galaxy classes. In Section 4, the results will be compared with 

other models and techniques for galaxy image classification. 

 
3-1 Introduction to Vision Transformer (ViT) 

 

Transformers, first introduced by Vaswani et al. in 2017 [33], have revolutionized natural language 

processing (NLP). These models utilize neural network architectures that are not dependent on 

convolution and can identify long-term dependencies and complex relationships in sequential data. One 

of the key innovations of transformers is the attention mechanism, which allows them to assign different 

weights to the relative importance of words in a sentence. Transformers have not only made a significant 

impact in NLP but have also achieved success in computer vision. 

 

Vision Transformers (ViTs) use a self-attention mechanism to better identify global dependencies in 

images, leading to improvements in tasks such as image classification and object detection. 

Additionally, these technologies enable cross-modal learning and can be applied to tasks that involve 

the combination of text and images, such as generating captions for images and visual question 

answering.  

 

The success of transformers in NLP has significantly influenced the computer vision research 

community, leading to the development of transformer-based models for vision tasks. Models such as 

 
3 https://www.kaggle.com/code/ahmadalijamali/ultrasound-vision-transformer-classification/notebook 
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DETR4, ViT5, DeiT6, and Swin7 have rapidly grown in prominence and are recognized for their 

advancements in object detection, image classification, and improved image understanding. These 

models have achieved significant improvements in applying transformers to computer vision tasks. ViT 

has demonstrated competitive and sometimes superior performance compared to traditional CNN8 

models, especially when large training datasets are available. 

 
3-2 Methodology 

 

Applying innovative techniques and models for the simultaneous classification of galaxy types with 

high accuracy and speed, compared to previous methods where classification did not reach 100%, has 

been challenging, and there is a strong need to address these shortcomings. In this study, we aim to 

classify 10 types of galaxies, which include Disturbed, Merging, Round Smooth, In-between Round 

Smooth, Cigar-shaped Smooth, Barred Spiral, Unbarred Tight Spiral, Unbarred Loose Spiral, Edge-on 

without Bulge, and Edge-on with Bulge galaxies, using the ViT model. Our research into image 

processing models and algorithms has revealed the successful performance of the ViT model in terms 

of image quality, noise, and background lighting, making ViT a reliable and efficient method for this 

experiment. Figure (2) illustrates the architecture of the ViT model. We will further elaborate on the 

enhanced sections. 

 

 

 
 

Figure (2): Vision Transformer (ViT) model architecture [37] 

 

3-2-1 Architecture Description 

 

The ViT (Vision Transformer) model, as shown in Figure 2, differs from models like DeTr, Swin, and 

BeTr9. ViT employs a method similar to conventional transformers, where the image is first divided 

into smaller pieces called "patches," and these patches are then fed as input to the transformer network. 

This model works directly on visual data without utilizing structures like CNNs. In contrast, the DeTr 

model uses a combination of CNN and transformers for object detection. The Swin Transformer is an 

optimized variant of the transformer, where the input patches are processed in a "swin" manner to 

 
4 Detection Transformer* 
5 Vision Transformer 
6 Data-efficient Image Transformers 
7 Shifted Window Transformer 
8 Convolutional Neural Network 
9 Better Transformer 
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accommodate different scales. The BeTr model introduces improvements over previous transformer 

models and is designed for various applications. Due to the complexity of the structure and texture of 

galaxies in images, their detection and classification are challenging. Given the results obtained from 

datasets across different fields by ViT, employing this model is a smart choice for classifying galaxies 

based on morphology. 

 
 

3-2-2 Preprocessing Stage 

 

Before beginning the classification process, the dataset images require preprocessing. Preprocessing is 

a fundamental step in data processing and preparation for machine learning and deep learning. Without 

proper preprocessing, the data may contain unnecessary information, noise, and excessive dimensions, 

which can reduce model performance. Preprocessing helps the model receive data in a more suitable 

and higher-quality format, allowing it to achieve greater efficiency, ultimately leading to improved 

performance, faster training, and higher model accuracy. During the preprocessing stage, all images 

were resized to a standard dimension of 256 x 256 pixels. This optimal size was chosen to preserve 

image details while facilitating processing by the model. Pixel values were normalized within a standard 

range to enable the model to recognize patterns more quickly and improve accuracy. 

 

To enhance model accuracy in identifying and classifying galaxy classes, a galaxy dataset comprising 

17,736 galaxy images across 10 classes was utilized. We used 80% of the dataset for model training, 

and the remaining 20% was reserved for model testing. This division helps the model generalize better 

by exposing it to a set of unseen data. For morphological feature extraction, this model uses visual 

features to recognize different types of galaxies. The data is labeled through the Galaxy Zoo project and 

includes information such as angle (ANS), right ascension (RA), redshift, and pixel scale. To adapt to 

ViT structure, images are divided into small blocks or "patches." These patches are sent as separate 

inputs to the model, facilitating the detection of local and global features across various scales. 

 

To improve performance, different parameters such as patch size, the number of transformer layers, 

attention heads, and learning rate were fine-tuned. These settings were applied to increase accuracy and 

reduce computational time. After completing the preprocessing and configuration stages, the data was 

prepared for training the ViT model, and its performance was evaluated in the testing phase. Accuracy 

and loss charts over training and validation epochs assist in analyzing model efficiency. These 

preprocessing steps have helped optimize and enhance the model's performance, enabling it to classify 

galaxies with high accuracy. 

 
3-2-3 Modified Parameters 

 

To accurately identify the morphology of each galaxy, some model parameters required rewriting and 

fine-tuning. Table 1 presents the modifications made to the model's parameters. 

These adjustments were crucial for adapting the model to the task of galaxy classification, ensuring that 

it could effectively handle the distinctive features of astronomical images. The modifications included 

changes in learning rate, batch size, patch size, and other parameters to optimize performance for this 

specific dataset. 

 
Table (1): Reset parameters of ViT model 

Changes applied Before After 

Increasing the size of patches  (patch_size) 4 16 

Increasing the number of transformer layers (n_transformers) 1 2 

Increasing the number of attention heads (n_heads Attention) 2 4 

Increasing the number of MLP units (mlp_units) [2048 ,1024] [4096 ,2048] 

Decreasing the learning rate 0.001 0.0001 

Increasing the number of epochs 10 50 

Reducing the input size of images (256,256,3) (120,120,3) 
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Each of these changes has been designed to enhance the model's ability to extract and process complex 

galaxy features. These adjustments reflect a strategic approach aimed at improving the model’s learning 

capacity and complexity, ultimately applied to increase its performance. Below is an analysis of each 

modification: 

• Increasing Patch Size (from 4 to 16): By increasing patch size, the model can focus on 

identifying larger and more general patterns in images rather than small details. These patterns 

can represent the overall structure of galaxies, such as classifying them into spiral, elliptical, 

and other types. This enables the model to learn on a more holistic level, enhancing the 

likelihood of high accuracy. Additionally, increasing patch size reduces the number of patches 

the model must process, which can reduce computational load. 

• Number of Transformer Layers (from 1 to 2): Adding another layer increases the model’s 

depth, allowing it to identify more complex and hierarchical relationships between patches. 

This depth increase can enhance the model’s ability to generalize and recognize more intricate 

patterns, which is useful in distinguishing subtle differences between galaxy types. 

• Increasing the Number of Attention Heads (from 2 to 4): Increasing the number of attention 

heads allows the model to simultaneously attend to various aspects of the input, improving its 

ability to identify diverse and nuanced patterns within each image. This is particularly effective 

for images where multiple galaxy features may require attention. 

• Increasing MLP Layer Units (from [2048, 1024] to [4096, 2048]): This adjustment boosts 

the model's capacity to learn complex, nonlinear transformations. This enhancement is 

particularly valuable for classification tasks that require a rich, complex feature representation, 

such as distinguishing different galaxy types. These layers act as a classifier booster, 

maximizing accuracy. 

• Decreasing Learning Rate (from 0.001 to 0.0001): Lowering the learning rate results in more 

stable convergence and reduces the risk of large jumps in optimization. This is balanced by the 

model’s increased complexity and helps guide it toward a more optimal point. 

• Increasing the Number of Epochs (from 10 to 50): Extending the number of epochs allows 

the model more time to learn from the data, potentially improving accuracy. However, the risk 

of overfitting increases, so monitoring validation error during training is essential. 

• Reducing Input Image Size (from (256,256,3) to (120,120,3)): Reducing input size may seem 

counter-intuitive at first but can lead to faster training and reduced overfitting, as it allows the 

model to focus more on key, general galaxy features rather than becoming caught up in finer 

details. This can be especially beneficial if the target galaxy structures are large enough to be 

recognizable at lower resolutions. It can also prevent unnecessary learning and improve the 

model’s speed and learning accuracy. 

 

The adjustments made to the ViT model's parameters also contributed to a reduction in computation 

time. The program was executed on a laptop with the following hardware specifications: an Intel(R) 

Core(TM) i7-1065G7 processor, 8 GB of RAM, and an Nvidia GeForce MX330 2GB GPU, within the 

Anaconda Navigator 2.4.2 environment. The operation was completed in 2,107 seconds. With more 

powerful processors, the computation time could be expected to decrease significantly. Due to its 

complexity and high computational demands, this model takes significant time on standard hardware. 

Access to powerful GPUs, such as the V100-SXM2-32GB, can provide better processing performance 

for this model. In some ViT-based models, like EfficientViT, computational complexity is reduced 

using techniques like Linformer, which provides better speeds even on moderate hardware compared 

to the classic ViT. Although this model does not reach the processing speeds of MobileViT, it requires 

less processing time than ViT and performs well on average GPUs. 

MobileViT, with its lightweight structure and high processing speed, is designed specifically for use in 

resource-limited devices that require fast processing. On servers like Nvidia V100-SXM2, MobileViT 

needs less than 45 milliseconds per step, making it ideal for rapid applications and lightweight 

environments. In contrast, CvT, by combining CNNs with transformers, achieves even faster processing 

than classic ViT on powerful servers like the V100. This model ranks well in both speed and accuracy 

https://doi.org/10.22060/eej.2024.23499.5620


AUT Journal of Electrical Engineering 
10.22060/eej.2024.23499.5620 

categories, especially on high-performance computing servers capable of processing larger, more 

complex models. 

ViT achieves the best accuracy on powerful GPUs, but its processing speed is considerably slower on 

lightweight hardware. Despite the limitations of our tools and resources, we were able to achieve 

promising and acceptable results, which will be discussed and analyzed in Section 4. 

 

4. Results 

 

This section presents the results obtained from galaxy classification using the ViT model. The analytical 

and processing capabilities of the ViT model were notably impressive and satisfactory, demonstrating 

acceptable results and outperforming previous methods and models in terms of accuracy and speed in 

astronomical contexts. To evaluate the performance of the ViT model, we utilized a dataset comprising 

17,736 galaxy images. From this, 14,189 images were allocated for training, and 3,547 images were 

reserved for testing. Figure (3) illustrates the distribution of images across the 10 galaxy classes used 

for testing the model. The results show that the ViT model provided substantial improvements in both 

accuracy and processing speed compared to traditional methods. The model's performance across 

different galaxy classes was evaluated based on various metrics, and the findings underscore the 

effectiveness of the ViT model in handling and classifying complex astronomical data. In the following 

sections, we will delve into a detailed analysis of these results and compare them with other 

classification techniques and models in the field of astronomy. 

 

 

Figure (3) Frequency diagram of dataset of galaxy classes images 

In Figure (4), the results indicate a perfect classification accuracy of 100% for six galaxy classes: edge-

on without bulge, barred spiral, Disturbed, Unbarred Tight Spiral, Cigar Shaped Smooth, and In-

between Round Smooth Galaxies. These results demonstrate that the ViT model achieved an overall 

success rate of 99.85%. Out of the 3,547 test images, the model accurately classified 3,542 galaxies, 

with only 5 images being misclassified, as shown in Figure (5). 
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Figure (4) The number of correct classification of each class, red color (number of images of each class) - blue color 

(number of correct recognition) 
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Figure (5) The success rate of the ViT model for correct and incorrect classification of galaxies from a total of 3547 test 

images. 

The images of galaxies within each class can be challenging to classify due to stellar scattering around 

the arms or edges and the presence of dispersed stars in the background. For example, the classification 
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of irregular and merging galaxies, as well as edge-on galaxies with bulges, presents a significant 

challenge due to their diverse shapes and structures. Training a model to accurately classify these types 

of galaxies is notably more complex compared to other classes. This complexity arises from the unique 

and often overlapping features that complicate the detection and differentiation of these galaxy types. 

 

 

Figure (6) confusion matrix for classification of 10 galaxy class  

As shown in the confusion matrix in Figure (6), the ViT model correctly classified all images in six 

galaxy classes. However, in four other classes, it made errors in categorizing five images. These errors 

include: 

- Two instances of misclassifying edge-on with bulges galaxy as barred spirals. 

- One instance of misclassifying a merging galaxy as a barred spiral. 

- One instance of misclassifying an unbarred Loose spiral galaxy as an edge-on without bulge. 

- One instance of misclassifying a Round Smooth galaxy as a barred spiral. 

Given the complexity of galaxy morphologies and the number of test images, the classification 

performed by the ViT model has been highly successful, demonstrating the model's strong capability in 

handling complex image classification tasks. It is also possible that these five misclassifications could 

be due to the model's higher precision compared to human classification, where these images might 

have been misclassified by humans. Some factors can lead to misclassifications in the model. For 

instance, certain galaxy classes are structurally and visually similar. Spiral and irregular galaxies, for 

example, can appear very similar in certain images, especially when taken from different angles. This 

similarity may cause the ViT model to misclassify these classes. Variations in galaxy brightness due to 

changes in instrumentation or observational conditions can also prevent the ViT model from accurately 

identifying key features, leading to incorrect classification of some classes.  

The ViT model requires a large number of images for each class for effective learning. If some classes 

are underrepresented, the model may struggle to recognize them accurately. In the Galaxy10 DECaLS 

dataset, certain classes may be underrepresented or display physical differences across samples. In 

many galaxy images, the scale and viewing angle can vary, presenting another challenge for the ViT 
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model. Galaxies viewed from oblique or edge-on angles are generally more complex than those viewed 

head-on, making them prone to misclassification. Finally, ViT models are primarily sensitive to local 

patterns and short-range information, while some galaxy features require a broader view and an 

understanding of structural characteristics across the whole image. This may be another factor 

contributing to errors in classes with complex, composite structures. In Table 2, the performance of the 

model for 10 classes is presented. As seen in the table, classes 1, 2, 6, and 8 have achieved a value of 

100% across all metrics (Accuracy, F1-Score, Recall, and Precision). This indicates that the model has 

successfully identified these classes without any errors. This excellent performance may be attributed 

to the distinct and prominent features of these classes, which make them easy for the model to recognize. 

Class 3, with an accuracy of 99.944% and an F1-Score of 99.567%, shows that this class generally 

performs well; however, since Recall (99.138%) is lower than Precision (100%), it means that the model 

has misclassified some samples into other classes (false positives). Class 9 also exhibits high 

performance with an accuracy of 99.887% and an F1-Score of 99.628%, similar to Class 3, but with a 

slight drop in Precision (99.258%), which may indicate the presence of false positives. 

 

Classes 4, 5, and 10 have accuracies close to 100%, with Recall at the highest level and slightly lower 

Precision. For example, Class 10 has a Recall of 100% and a Precision of 99.722%. This indicates that 

the model is proficient at identifying positive samples, but there are still false positives, likely due to 

visual similarities with other classes. In some classes, such as Classes 3 and 9, Precision is lower than 

Recall, suggesting the existence of false positives, possibly due to visual similarities between classes. 

For instance, irregular galaxies may be easily mistaken for other types of galaxies. Given that most 

classes have high accuracy and only a few are affected by false positives, it can be concluded that the 

ViT model performs exceptionally well in identifying galaxies. 

 

 
Table 2. Classification Performance of ViT Model. 

Accuracy F1_Score     Recall     Precision     Class     

 

100 

 

100 

 

100 

 

100 

 

1 

100 100 100 100 2 

99.944 99.567 99.138 100 3 

99.972 99.868 99.736 100 4 

99.972 99.812 99.624 100 5 

100 100 100 100 6 

99.972 99.861 99.721 100 7 

100 100 100 100 8 

99.887 99.628 100 99.258 9 

99.972 99.861 100 99.722 10 

 

Figure 7 illustrates the changes in the model's training accuracy and validation accuracy over 50 training 

epochs. The horizontal axis represents the number of epochs, and the vertical axis shows accuracy. The 

graph demonstrates that, in the initial epochs, both training and validation accuracies increase rapidly, 

indicating the model’s swift learning from patterns in the data. After these initial epochs, the model's 

accuracy gradually approaches a value close to 1.0 (or 100%), with the model reaching near-maximum 

accuracy around epoch 15. This suggests that the model is well-trained and almost saturated. Both 

validation accuracy (orange) and training accuracy (blue) remain at a stable level with minimal gap 

between them. This indicates that the model has not overfitted and has successfully retained its 

generalization ability. The final loss value is low (0.0093), indicating minimal error in predicting the 

correct classes. 

 

https://doi.org/10.22060/eej.2024.23499.5620


AUT Journal of Electrical Engineering 
10.22060/eej.2024.23499.5620 

 
Figure 7: Trend of training accuracy and validation accuracy over training epochs. 

 

The graph shows that, in many epochs, validation accuracy (orange) exceeds training accuracy (blue). 

This may be due to the use of data augmentation techniques during training, such as rotation, cropping, 

color changes, or flipping. These augmentations add variations to the training set, making predictions 

more challenging for the model. Consequently, training accuracy is slightly lower than validation 

accuracy, as the validation set is generally presented without such augmentations. Additionally, if the 

model employs optimization techniques like mini-batch SGD, the results of each epoch might vary due 

to the randomness in batch selection. These variations can cause small fluctuations in recorded 

accuracies and, in some cases, validation accuracy to exceed training accuracy. 

 

Occasionally, minor differences between training and validation samples may lead to this outcome. For 

instance, if the validation data distribution is simpler than that of the training data, the model might 

perform better on the validation set. This scenario is often observed in complex models that utilize 

various regularization and augmentation techniques and generally does not indicate a problem. The 

slight discrepancy observed here reflects the model’s good generalization ability, showing that the 

model has not become overly reliant on the training data. This graph highlights that the model performs 

exceptionally well in classifying galaxy classes, achieving high accuracy. Additionally, the balanced 

training and validation accuracy indicates that the model is likely to perform well in real-world 

scenarios. 

 

Figure (8) shows the validation loss curve for the model. This chart is typically generated during the 

training of deep learning models and reflects the model's performance on the validation set throughout 

the training process. The validation set is a subset of data used to evaluate the model during training to 

prevent overfitting and estimate the model's overall performance. 

The x-axis of Figure (8) represents the number of training epochs, while the y-axis shows the mean 

validation loss. Initially, the model learns rapidly, with the loss decreasing significantly. This indicates 

that the model is effectively capturing the primary patterns in the data. After several epochs, the loss 

stabilizes near a constant value, suggesting that the model's performance has converged and further 

training does not lead to substantial improvements.  

If the validation loss were to increase, it would signal overfitting, meaning that the model has become 

too tailored to the training data and is losing its ability to generalize to new, unseen data. The provided 

chart demonstrates good model performance, as the validation loss has reached a minimum and 

accuracy is maximized. The absence of a significant increase in validation loss and the stabilization of 

accuracy indicate that the model has not overfitted and has reached a converged state. Continuing 

training beyond this point is unlikely to yield significant performance improvements. 
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Figure (8) loss diagram of model validation data 

A review of previous literature indicates that automated methods for galaxy classification using 

machine learning and neural networks have been extensively utilized due to their ability to analyze large 

volumes of data and extract complex features. In recent years, several successful models and methods 

for high-accuracy galaxy classification have been introduced. Table 3 presents a comparison of some 

of these models along with their performance. While the accuracy of the models listed in the table is 

acceptable considering the number of classes and test images, our model demonstrates superior 

performance compared to other competitors. This highlights the effectiveness of Vision Transformers 

(ViTs) as a reliable and successful approach for classifying galaxy images, particularly those of small, 

faint galaxies with high noise levels. 

 

Table (3) Comparison of the success rates of successful models and methods in galaxy classification (in percentage) 

Paper Title Year Number of 

galaxy class  

Dataset Accuracy (%) 

Deep Galaxy: Classification of Galaxies based on 

Deep Convolutional Neural Networks [29] 
2017 3 EFIGI 97.27 

Galaxy detection and identication using deep learning 

and data augmentation [18] 
2018 5 Galaxy Zoo 81 

Galaxy Morphology Classification with Deep 

Convolutional Neural Networks [30] 
2018 5 Galaxy Zoo 95.20 

Galaxy Classification: A deep learning approach for 
classifying Sloan Digital Sky Survey images [25] 

2021 10 Galaxy Zoo 84.73 

Galaxy Morphological Classification with Efficient 

Vision Transformer [31] 
2021 8 GZ 2 80.55 

Automated detection and classification of galaxies 

based on their brightness patterns [35] 
2022 3 EFIGI 97.2 

Galaxy Morphological Classification with 
Deformable Attention Transformer [36] 

2022 6 AMIGA & EFIGI  94 

Spiral-Elliptical automated galaxy morphology 

classification from telescope images [22] 
2023 2 SDSS 95.5 

Accurate and efficient galaxy classification based on 
mobile vision transformer [27] 

2024 10 Galaxy10 DECals 87 

Galaxy morphology classification based on 

Convolutional vision Transformer (CvT) [32]         
2024 5 GZ 2 & CANDLES 98 

Proposed method - 10 Galaxy10 DECals 

 
99.85 

 

As shown in Table 3, our improved ViT model outperforms other ViT-based models such as CvT, 

MobileViT, and EfficientViT in classifying galaxy images. This advantage is primarily due to the 

specialized ViT architecture and fine-tuning of its parameters. 
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The model's architecture utilizes multi-head attention and direct processing of image patches, which 

facilitates the identification of both global and distributed features within galaxy images. Additionally, 

the use of more transformer layers and MLP units allows for learning more complex galaxy features. 

Careful model tuning, including a lower learning rate and a higher number of epochs, enables the model 

to train with more stable convergence and achieve higher accuracy. Consequently, this model is ideal 

for projects that require high accuracy and significant computational resources, effectively detecting 

complex and distinct galaxy features. 

In contrast, the EfficientViT model employs the Linformer method and low-rank matrices to reduce 

computational complexity, leading to faster processing and lower resource consumption, although it 

may affect the accuracy in learning certain finer details. This model is trained with a higher learning 

rate and more epochs, making it well-suited for processing large and imbalanced datasets like Galaxy 

Zoo 2. Thus, EfficientViT is more applicable for large-scale projects or systems with limited resources. 

The MobileViT model combines MobileNet and ViT, utilizing lightweight MobileNetV2 blocks and 

transfer learning from ImageNet. With an accuracy of 87.12% on the Galaxy10 DECaLS dataset and 

an inference speed of 45 milliseconds per step, it is a suitable choice for low-power devices and 

applications requiring quick processing. Due to its unique architecture, MobileViT is better suited for 

applications requiring speed and efficient resource usage. Overall, our ViT model, thanks to its 

specialized architecture and fine-tuning, is an ideal choice for projects requiring high accuracy and 

substantial computational power. On the other hand, EfficientViT and MobileViT models are optimized 

respectively for large-scale processing and fast deployment on low-power devices. 

 

5. Discussion 

As shown in Table 3, the methods employed, considering the number of galaxy classes, have been able 

to provide satisfactory results in testing the detection and classification power. The use of neural 

network models in galaxy classification offers several advantages. Deep neural networks, due to their 

multi-layered structure and ability to learn complex features from data, perform highly accurately in 

galaxy classification. These models can identify various features of galaxies, such as shape, brightness, 

and color, which may not be perceptible to the human eye. Furthermore, they can learn hidden patterns 

and relationships from the training data provided to them. This capability allows them to perform well 

even on new and unseen data. 

Neural networks are capable of processing large volumes of image data in parallel, which is crucial for 

applications like classifying millions of galaxy images. Galaxies exhibit complex features that might 

not be immediately apparent. Deep neural networks can detect highly intricate features in data, resulting 

in more accurate classification compared to traditional methods. They can be employed for various 

tasks such as detecting and classifying types of galaxies (e.g., elliptical, spiral, and irregular galaxies) 

and even predicting other physical properties. Neural networks also perform well with incomplete or 

noisy data due to their ability to generalize and extract useful patterns from imperfect data. Neural 

networks are adaptable and modifiable, meaning that models can be optimized for improved 

performance in specific applications, such as classifying particular types of galaxies.  

Overall, the use of neural networks, especially Vision Transformers (ViTs), in galaxy classification 

offers numerous advantages due to their ability to learn complex patterns and generalize to new data. 

This results in improved accuracy and efficiency in this field. The use of ViTs in galaxy classification 

has several key advantages that make this model a strong choice compared to traditional methods like 

Convolutional Neural Networks (CNNs). For example, ViT relies on the Transformer architecture 

rather than local filters like CNNs. This allows it to effectively model long-range dependencies between 

different pixels in an image. This feature is highly beneficial for classifying galaxies, which often have 
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complex patterns and large-scale structures. ViTs are also easily scalable and can be adapted to analyze 

images at various resolutions, which is particularly useful for high-resolution galaxy images. 

ViT can leverage pre-trained models on large datasets like ImageNet, enabling the model to perform 

well without requiring an extensive amount of training data. This is particularly valuable for galaxy 

classification, where labeled data might be scarce. Unlike CNNs, which require complex filter designs 

and adjustments, ViT automatically identifies and models important image features using the Attention 

Mechanism. This simplifies the model development process and reduces the need for specialized 

expertise in designing neural networks. ViT generally performs better in classifying complex data like 

galaxy images, which contain extensive details, due to its robust pattern modeling capabilities.ViT is 

inherently more resilient to changes in scale and orientation of images because its architecture relies on 

the entire image and the relationships between tokens, rather than local filters. This feature is especially 

useful for classifying galaxies, which can vary in size and orientation. Overall, utilizing ViT in galaxy 

classification can lead to significant improvements in accuracy and efficiency due to its superior 

modeling power, scalability, and reduced data requirements. 

 

6. Conclusion 

This research represents a significant contribution to the field of galaxy morphology classification, 

particularly by leveraging the power of machine learning, deep learning, and Vision Transformers 

(ViTs). Below is a summary of the key points and analytical insights: 

• Objective: 

The aim was to enhance galaxy morphology classification in large datasets by emulating human visual 

classification. The ViT model, originally designed for general image classification, has proven to be 

effective for classifying galaxies as well. In most cases, ViT achieves high accuracy in galaxy 

classification, especially when ample and diverse data are available. Despite the complexity of the ViT 

model, efficient processing can be achieved with suitable hardware (such as GPUs10 or TPUs11). ViT 

often outperforms traditional models like CNNs in certain scenarios, particularly in the classification of 

more complex data. 

 

 

• Challenges: 

- Need for Large Datasets: ViT requires a substantial amount of data to perform optimally. If galaxy 

data is limited, techniques such as data augmentation or additional preprocessing may be necessary. 

- High Computational Resources: Running large models like ViT demands significant computational 

resources. 

• Future Directions: 

- Transfer Learning: By using pre-trained ViT models on large datasets, accurate galaxy classification 

models can be developed even with limited data. 

- Combination with Other Models: Integrating ViT with other models, such as CNNs, could improve 

classification accuracy. 

 
10 Graphics Processing Unit 
11 Cloud Tensor Processing 
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Using ViT for galaxy classification is a modern and powerful approach that can offer more precise 

results compared to traditional methods, though it does require substantial data and computational 

resources. Our research extends the boundaries of automated galaxy classification and provides tools 

and datasets that are likely to influence future studies in this domain. The high levels of accuracy, 

especially with deep learning models, highlight the potential of artificial intelligence in deciphering the 

complexities of large-scale cosmic structures. 
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