[1] R. Sujatha, J.M. Chatterjee, N. Jhanjhi, S.N. Brohi, Performance of deep learning vs machine learning in plant leaf disease detection, Microprocessors and Microsystems, 80 (2021) 103615.
[2] M. Badiger, J.A. Mathew, Tomato plant leaf disease segmentation and multiclass disease detection using hybrid optimization enabled deep learning, Journal of Biotechnology, 374 (2023) 101-113.
[3] S.K. Sahu, M. Pandey, An optimal hybrid multiclass SVM for plant leaf disease detection using spatial Fuzzy C-Means model, Expert systems with applications, 214 (2023) 118989.
[4] C. Mattihalli, E. Gedefaye, F. Endalamaw, A. Necho, Plant leaf diseases detection and auto-medicine, Internet of Things, 1 (2018) 67-73.
[5] P. Schreinemachers, E.B. Simmons, M.C. Wopereis, Tapping the economic and nutritional power of vegetables, Global food security, 16 (2018) 36-45.
[6] S.L. Vini, P. Rathika, TrioConvTomatoNet: A robust CNN architecture for fast and accurate tomato leaf disease classification for real-time application, Scientia Horticulturae, 330 (2024) 113079.
[7] A. Ali, Plant leaf disease data set, Online available., (2019).
[8] S. Panno, S. Davino, A.G. Caruso, S. Bertacca, A. Crnogorac, A. Mandić, E. Noris, S. Matić, A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the Mediterranean basin, Agronomy, 11(11) (2021) 2188.
[9] R. Wang, M. Lammers, Y. Tikunov, A.G. Bovy, G.C. Angenent, R.A. de Maagd, The rin, nor and Cnr spontaneous mutations inhibit tomato fruit ripening in additive and epistatic manners, Plant science, 294 (2020) 110436.
[10] Y. Toda, F. Okura, How convolutional neural networks diagnose plant disease, Plant Phenomics, (2019).
[11] H. Sun, H. Xu, B. Liu, D. He, J. He, H. Zhang, N. Geng, MEAN-SSD: A novel real-time detector for apple leaf diseases using improved light-weight convolutional neural networks, Computers and Electronics in Agriculture, 189 (2021) 106379.
[12] P. Bedi, P. Gole, Plant disease detection using hybrid model based on convolutional autoencoder and convolutional neural network, Artificial Intelligence in Agriculture, 5 (2021) 90-101.
[13] M.I. Hossain, S. Jahan, M.R. Al Asif, M. Samsuddoha, K. Ahmed, Detecting tomato leaf diseases by image processing through deep convolutional neural networks, Smart Agricultural Technology, 5 (2023) 100301.
[14] S.G. Paul, A.A. Biswas, A. Saha, M.S. Zulfiker, N.A. Ritu, I. Zahan, M. Rahman, M.A. Islam, A real-time application-based convolutional neural network approach for tomato leaf disease classification, Array, 19 (2023) 100313.
[15] K. Perveen, S. Debnath, B. Pandey, S.P. Chand, N.A. Bukhari, P. Bhowmick, N.A. Alshaikh, S. Arzoo, S. Batool, Deep learning-based multiscale CNN-based U network model for leaf disease diagnosis and segmentation of lesions in tomato, Physiological and Molecular Plant Pathology, 128 (2023) 102148.
[16] J. Qiu, X. Lu, X. Wang, C. Chen, Y. Chen, Y. Yang, Research on image recognition of tomato leaf diseases based on improved AlexNet model, Heliyon, 10(13) (2024).
[17] S. DL, V. K, A. N, S. Vashistha, Tomato Leaf Disease Detection Using CNN, (2024).
[18] N.S. Kumar, J. Sony, A. Premkumar, R. Meenakshi, J.J. Nair, Transfer Learning-based Object Detection Models for Improved Diagnosis of Tomato Leaf Disease, Procedia Computer Science, 235 (2024) 3025-3034.
[19] P. Kaur, S. Harnal, V. Gautam, M.P. Singh, S.P. Singh, An approach for characterization of infected area in tomato leaf disease based on deep learning and object detection technique, Engineering Applications of Artificial Intelligence, 115 (2022) 105210.
[20] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929, (2020).
[21] M.C. Cara, G.R. Dahale, Z. Dong, R.T. Forestano, S. Gleyzer, D. Justice, K. Kong, T. Magorsch, K.T. Matchev, K. Matcheva, Quantum Vision Transformers for Quark-Gluon Classification, arXiv preprint arXiv:2405.10284, (2024).
[22] D. Hendrycks, K. Gimpel, Gaussian error linear units (gelus), arXiv preprint arXiv:1606.08415, (2016).
[23] W.G. Marchant, S. Gautam, S.F. Hutton, R. Srinivasan, Tomato yellow leaf curl virus-resistant and-susceptible tomato genotypes similarly impact the virus population genetics, Frontiers in Plant Science, 11 (2020) 599697.
[24] K.J. MacKenzie, L.G. Sumabat, K.V. Xavier, G.E. Vallad, A review of Corynespora cassiicola and its increasing relevance to tomato in Florida, Plant Health Progress, 19(4) (2018) 303-309.
[25] L. Broadbent, Epidemiology and control of tomato mosaic virus, Annual review of Phytopathology, 14(1) (1976) 75-96.
[26] J. Kroschel, N. Mujica, J. Okonya, A. Alyokhin, Insect pests affecting potatoes in tropical, subtropical, and temperate regions, The potato crop: Its agricultural, nutritional and social contribution to humankind, (2020) 251-306.
[27] R. Chaerani, R.E. Voorrips, Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance, Journal of general plant pathology, 72 (2006) 335-347.
[28] J. Carlier, M.-F. Zapater, F. Lapeyre, D.R. Jones, X. Mourichon, Septoria leaf spot of banana: a newly discovered disease caused by Mycosphaerella eumusae (anamorph Septoria eumusae), Phytopathology, 90(8) (2000) 884-890.
[29] S. Rivas, C.M. Thomas, Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum, Annu. Rev. Phytopathol., 43(1) (2005) 395-436.
[30] R.E. Stall, J.B. Jones, G.V. Minsavage, Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot, Annual review of phytopathology, 47(1) (2009) 265-284.
[31] N. Herrmann, D. Arya, M.W. Doherty, A. Mingare, J.C. Pillay, F. Preis, S. Prestel, Quantum utility–definition and assessment of a practical quantum advantage, in: 2023 IEEE International Conference on Quantum Software (QSW), IEEE, 2023, pp. 162-174.
[32] J. Bradbury, R. Frostig, P. Hawkins, M.J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, JAX: composable transformations of Python+ NumPy programs, (2018).
[33] J. Heek, A. Levskaya, A. Oliver, M. Ritter, B. Rondepierre, A. Steiner, M. van Zee, Flax: A neural network library and ecosystem for JAX, 2020, URL
http://github. com/google/flax, 1 (2020).
[34] S.-X. Zhang, J. Allcock, Z.-Q. Wan, S. Liu, J. Sun, H. Yu, X.-H. Yang, J. Qiu, Z. Ye, Y.-Q. Chen, Tensorcircuit: a quantum software framework for the nisq era, Quantum, 7 (2023) 912.
[35] M. Andrews, J. Alison, S. An, B. Burkle, S. Gleyzer, M. Narain, M. Paulini, B. Poczos, E. Usai, End-to-end jet classification of quarks and gluons with the CMS Open Data, Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment, 977 (2020) 164304.