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Abstract: 

The early and accurate detection of plant diseases is vital for ensuring food security and enhancing 

agricultural productivity. Tomato plants, being one of the most widely cultivated crops, are particularly 

susceptible to several prevalent leaf conditions. These conditions can lead to significant crop losses and 

adversely affect both yield and quality, posing a substantial challenge to farmers and the agricultural 

industry. To identify tomato leaf conditions, traditional methods such as Machine Learning and modern 

approaches like various Deep Learning architectures have been developed and studied by researchers. 

This paper presents a novel approach for the detection of ten classes of tomato leaf conditions, 

encompassing both healthy and diseased leaves. The proposed method leverages a new Quantum Vision 

Transformer architecture, integrating variational quantum circuits within both the attention mechanism 

and the multi-layer perceptron. In our study, we conducted extensive experiments comparing the 

performance of Quantum Vision Transformer with the Vision Transformer. The experimental results 

demonstrate that the Quantum Vision Transformer model achieves an Area Under the Curve of 0.928 and 

an accuracy of 66.85%, while the Vision Transformer model reaches an Area Under the Curve of 0.95 

and an accuracy of 72.15%. This highlights the effectiveness and robustness of both models in accurately 

detecting tomato leaf conditions. The research findings suggest that the Quantum Vision Transformer 

architecture can serve as a powerful tool for early detection in agricultural applications using quantum 

computers, contributing to more efficient and sustainable farming practices. 
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1- Introduction 

Plants are essential because they serve as the primary source of energy production for humanity, 

providing nutrition, medicinal benefits, and other values. During crop cultivation, diseases affecting plant 

leaves can cause substantial losses in crop production and economic challenges. Therefore, the 

identification of leaf diseases is crucial in the agricultural industry [1]. Moreover, rising crop production 

in agriculture is increasingly threatened by plant diseases, posing a critical global challenge to food 

security. Modern environmental agriculture emphasizes not only increasing crop yields but also 

enhancing their quality [2], highlighting the urgent need for effective disease management practices. In 

recent years, crop occurrence has increased, accompanied by a rise in the complexity of plant diseases and 

the prevalence of harmful insects, posing significant risks to agriculture. Detecting and diagnosing plant 

diseases has thus become a pressing concern in recent times. Early identification of diseases is crucial as 

it enables farmers to take swift action to prevent their spread to other plants [3]. This early detection not 

only prevents substantial production and economic losses but also helps maintain the quality and quantity 

of crops. Therefore, through early detection and effective management strategies, these challenges can be 

mitigated [4]. Tomatoes are a widely cultivated and seasonal crop known for their high nutrient density. 

They offer significant health benefits and are used in various edible products like sauces, pastes, canned 

tomatoes, ketchup, and juices. Additionally, tomatoes possess pharmacological qualities that contribute to 

their protective effects against conditions such as hypertension, liver inflammation, and gum bleeding [5].  

According to the UN Food and Agricultural Organization (FAO), every nation participates in the global 

tomato market, collectively producing millions of metric tons annually, reflecting significant competition 

as reported by Our World in Data [6, 7]. Tomato production faces various challenges post-planting, 

including climate change, soil fertility, water availability, and disease management. Pathogens such as 
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bacteria, fungi, viruses, and viroids pose a significant threat to tomato plants, particularly affecting their 

leaves. The genetic susceptibility of tomatoes to these diseases necessitates effective management 

strategies, including addressing climate change impacts, implementing updated phytopathological 

controls, and considering the influence of the global seed industry on tomato crop genetics [8]. The 

common threats to long-term tomato protection have a significant impact on agriculture worldwide. 

Additionally, farmers rely on their firsthand experience to identify diseases, which may lead to challenges 

in categorizing them [9].  

Moreover, in contrast to the aforementioned challenges, early detection proves highly beneficial, 

facilitated by computer-aided technologies that utilize various Machine Learning (ML) techniques and 

Deep Learning (DL) networks specifically designed for this purpose. These technologies help mitigate 

damages and losses in the agriculture industry, resulting in significant economic savings. Traditional 

methods of plant disease detection, which rely on manually crafted classification features, are inadequate 

for effectively handling the differences between classes and variations within the same class of diseased 

leaf images in real-world environments. However, with advancements in computing power, big data, the 

Internet, and artificial intelligence technologies, convolutional neural networks (CNNs) have become 

popular for plant disease detection. CNNs leverage advantageous features such as local connections, 

weight sharing, and pooling operations, making them well-suited for this task [10, 11]. The prediction and 

training times of state-of-the-art plant detection techniques are high due to the large number of training 

parameters involved [12].  

A new network architecture is required to address the issues raised. An innovative architecture called 

QViT has been developed to classify tomato leaf diseases precisely. This architecture not only facilitates 

more precise disease classification but also brings several advantages: 

(a) Reduced Training Time: Quantum computing's computational prowess enables QViT models to 

swiftly learn and effectively train with fewer parameters, significantly reducing training time. 
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(b) Enhanced Feature Learning: Leveraging quantum computing's capabilities, models can rapidly 

grasp intricate features, thereby improving the accuracy and speed of tomato leaf disease 

detection. 

(c) Optimized Data Utilization: QViT optimizes data utilization and accelerates training processes, 

diminishing the need for extensive datasets traditionally required for effective model training. 

 

These advancements empower farmers to harness advanced technologies more efficiently to automate 

tomato leaf disease detection. This potential reduction in costs and increase in productivity underscore the 

transformative impact of QViT in agriculture. 

2- Related Work 

Kawsar Ahmed et al. proposed a Deep Convolutional Neural Network (DCNN) model aimed at 

enhancing the detection and classification of tomato leaf diseases. Their approach also incorporated image 

pre-processing techniques, such as Gaussian and Median filters, alongside color model transformations 

(HSI and CMYK) to further improve accuracy. The study identified optimal combinations for enhancing 

accuracy in disease classification. The results highlighted significant achievements, with the best-

performing DCNN model—ResNet-50—demonstrating a remarkable 99.53% accuracy when using 

Gaussian Blur and Gaussian Noise filters alongside RGB to CMYK color conversion [13]. Al Amin 

Biswas et al. emphasized the critical importance of early and accurate diagnosis of tomato leaf diseases to 

enhance plant productivity and agricultural sustainability. They introduced a lightweight custom 

convolutional neural network (CNN) model for classifying eleven classes of tomato leaf diseases, 

including healthy leaves. Through extensive data preprocessing and augmentation, the proposed model 

achieved a 95.00% accuracy, utilizing transfer learning (TL)-based models VGG-16 and VGG-19. 

Furthermore, the study integrated the best-performing model into web- and Android-based applications 

for real-time disease classification, demonstrating its practical utility for farmers [14]. Kahkashan Perveen 

et al. introduced a multiscale U-network tailored for effective segmentation and diagnosis of tomato leaf 

lesions. Addressing challenges such as diverse lesion sizes and shapes, the model incorporated multi-scale 
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residual modules to adapt dynamically. A Classifier and Bridge (CB) module connected disease feature 

extraction with lesion segmentation, utilizing minimal pixel-level annotations through supervised training 

with binary cross-entropy loss. Evaluation across diverse test sets demonstrated an impressive average 

accuracy of 99.2%, along with robustness against brightness reduction at 92.4% and resilience to salt-and-

pepper noise at 99.2% [15]. Chen CHEN et al. enhanced the AlexNet model with HOG and LBP 

weighted fusion techniques. Focusing on eight types of tomato leaf diseases and healthy leaves, the 

research employed transfer learning from the PlantVillage dataset, reducing fully connected layers to 

optimize classification efficiency. Using the Keras framework in Python, the proposed model achieved a 

high recognition accuracy of 98.83% with AlexNet [16]. Ledbin Vini et al. introduced 

TrioConvTomatoNet, a deep convolutional neural network designed for the precise classification of leaf 

diseases by optimizing feature extraction through layered convolution stages. Employing stochastic 

gradient descent for enhanced learning, the method integrated both existing and real-time datasets, 

demonstrating superior accuracy with a 99.39% success rate across varied conditions. This approach not 

only enabled early disease detection crucial for agricultural management but also promised practical 

deployment via user-friendly applications [6]. Manjunatha Badiger and Jose Alex Mathew employed 

advanced DL techniques, specifically the deep batch-normalized eLu AlexNet (DbneAlexnet), for 

detecting and classifying tomato plant diseases. Initial preprocessing involved anisotropic filtering to 

refine leaf images, followed by precise segmentation using U-Net optimized through Gradient-Golden 

search optimization (Gradient-GSO). Augmentation techniques enhanced dataset diversity, while 

classification utilized DbneAlexnet trained with Gradient Jaya-Golden search optimization (GJ-GSO, 

achieving a high accuracy of 92.4% in identifying diseases such as bacterial spots and late blight. 

Identified gaps include the need for broader dataset validation and scalability assessment in diverse 

agricultural environments [2]. Shanthi et al. demonstrated that using CNNs, particularly with architectures 

like AlexNet and VGGNet-16, significantly improves the early detection and classification of tomato leaf 

diseases. This early detection is crucial for reducing economic losses and improving crop quality and 

yield. The study achieved an accuracy of 91.2%, but it also recognized the need for a more diverse dataset 
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and further refinement of the model to enhance accuracy and reliability [17]. Neeraj S Kumar et al. used 

YOLOv5 and YOLOv7 models with transfer learning and ensemble techniques on an open-source tomato 

leaf disease dataset. The combined YOLO models achieved a high accuracy of 98.8%, along with 

impressive precision and recall. Challenges included high computational time and limited dataset 

diversity, which were addressed through transfer learning [18]. Santar Pal Singh et al. demonstrated that 

the modified Mask R-CNN model effectively detects and segments tomato leaf diseases, achieving a high 

accuracy of 98% and efficiency. However, the study identified challenges such as misidentification of 

lesions, dependency on precise annotations, and limited scope in disease identification [19]. Table 1 

provides a comprehensive summary of the previous works referenced in this study, highlighting the key 

findings and methodologies employed in the research on tomato leaf disease detection and classification. 

In this work, the QViT architecture is employed to detect and classify tomato leaf diseases. 

The rest of the paper is ordered in the following manner. The material and method are detailed in Section 

3. The evaluation, analyses, and discussions of the experiment performance are presented in section 4. 

Finally, section 5 provides a comprehensive summary of the article. 

Table 1. Summary of Previous Research on Tomato Leaf Disease Detection. 

Reference Year 
Dataset 

Size 

Number 

of Class 
Method Accuracy (%) 

Manjunatha and Jose [2]  2023 18161 10 DbneAlexnet 92.40 

Ledbin et al. [6] 2024 18160 10 TrioConvTomatoNet 99.39 

Ahmed et al. [13] 2023 6794 3 DCNN 99.53 

Al Amin et al. [14] 2023 32535 11 Lightweight custom CNN 95.00 

Kahkashan et al. [15] 2023 18096 10 Multiscale U-network 99.20 

Chen et al. [16] 2024 13038 9 Enhanced AlexNet 98.83 

Shanthi et al. [17] 2024 2782 6 CNN 91.20 

Neeraj et al. [18]  2024 18162 10 Multiple YOLO 98.80 

Santar et al. [19]  2022 1610 7 Modified Mask R-CNN 98.00 

 

3- Materials and methods 

This section details the methodologies employed in this investigation, encompassing the structures and 

the detection process.  
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3-1- Preprocessing 

Before feeding the images to the model, we resized them to 40 40 for several reasons. First, transformers 

require fixed-size inputs; hence, by resizing the images, we ensure that all the images have the same 

dimensions, which is essential for batch processing. Additionally, resizing the images to smaller 

dimensions yields computational efficiency—the smaller the images, the less memory usage, and the 

faster the processing. Furthermore, a model that can handle lower-quality images often learns to focus on 

the important features that are invariant to resolution and noise, leading to better generalization. This 

means the model can work well with high-quality images as well.  

 

3-2- Model 

 We utilized a Quantum Transformer Encoder in our approach, incorporating Variational Quantum 

Circuits (VQCs) into the multi-head attention (MHA) and multi-layer perceptron (MLP) components. The 

VQCs conduct sophisticated quantum computations, the MHA enables the model to focus on different 

regions of the image simultaneously, and the MLP processes the information from the MHA for final 

prediction. The procedure closely resembles the original classical Vision Transformer (ViT) [20], in such 

a way that the input image is divided into small patches, which are accompanied by position embeddings. 

Position embeddings are vectors that encode the patches in the original image; this allows the model to 

ascertain the spatial position of each patch in the given image. Fig. 1. depicts the architecture of the 

model. 
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Fig. 1. Model Structure 

In this approach, to enhance the functionality of both MHA and MLP within the encoder, the traditional 

feedforward layers and classical fully connected are replaced with VQCs [21]. To elaborate, VQCs 

substituted for the classical MHA to compute the linear projections—Query (Q), Key (K), Value (V), and 

the final output, which are essential for the MHA to simultaneously focus on different parts of the input—

during the MHA calculations. Moreover, the replacement of the classical fully connected layers, in which 

each neuron applies a linear transformation to the input vector through a weights matrix, with the VQCs 

in the MLP, has been carried out. Albeit these changes, the activation functions employed in MLP, 

namely GELU [22], continue to be computed with classical methodologies.  

More precisely, the output of the classical multi-head attention layer is calculated by using VQCs to 

calculate all linear projections in the MHA calculations instead of classical feedforward layers. Similarly, 

in the MLP module of the encoder, we also apply VQCs to substitute classical fully connected layers. The 

configuration of the VQCs we utilized [21] can be observed in Fig. 2.  
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Fig. 2. Implementation of Variational Quantum Circuits in QViT 

Using rotation angles, every element of the vector 0 1( , , )nx x x −= is embedded into qubits. Rotation 

angles, which allow precise encoding of classical data into quantum states, specify how much each qubit 

rotates around different axes of the Bloch sphere—a spherical representation used to visualize the 

quantum state of a qubit. Subsequently, each qubit undergoes one-parameter rotations, which are 

0 1( , , )n   −= and is learned alongside other model parameters during training to optimize the qubit 

states. Afterward, CNOT gates interconnect the qubits, linking the qubits states together to have a 

functionality akin to matrix multiplication. At the final stage, each qubit is measured, and its output is 

passed to the next part of the encoder. 

4- Experiment Results and Discussion 

In this section, we cover the specifics of the experiments, such as data collection, parameters, and 

experimental results. We also demonstrate the performance of each model using different data and 

methods. 

4-1- Dataset 

We used the public dataset named PlantVillage Dataset, which consists of plant leaves of 14 crops [7]. 

For this research, we incorporated a diverse range of tomato leaves, including healthy ones and those 

affected by nine diseases. The samples can be observed in Fig. 3. Each category of the leaves, with their 
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accompanying briefly explained symptoms, is listed in Table 2. In the analysis of the data set, we have 

indicated class distribution, as shown in Fig. 4. 

 

Fig. 3. Examples of 10 different types of tomato leaf diseases 

 

Fig. 4. Bar Chart Illustrating Class Distribution in the Original Dataset of Tomato Leaf Diseases 
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4-2- Experiment setup 

The experiment was conducted on a Windows 10 PC using Google Colaboratory and Google Drive with 

8 GB of storage. The setup included a 64-bit operating system, Python 3.10.12, 12.67 GB of memory, and 

2 CPUs. Keras 3.4.1 and TensorFlow 2.17.0 were employed to manage the deep neural network training 

and validation processes. 

Table 2. Leaf Categories and Briefly Explained Symptoms 

Number Class Symptoms 
Number of 

Images 

1 Healthy Total green color 1591 

2 Yellow Curl Virus Leaf curling, yellowing, and stunting [23] 5357 

3 Target spot Necrotic brown lesions with concentric rings on tomato leaves [24] 1404 

4 Mosaic Virus 
Lighter coloring, bushy appearance, mottled leaves, leaf curling, 

distorted fruit, and internal browning [25] 
373 

5 Spider Mites 
Speckled leaves, whitish-yellowish discoloration, webbing, brown 

falling leaves, fruit russeting [26] 
1676 

6 Early Blight Dark spots with concentric rings [27] 1000 

7 Late Blight  1909 

8 Septoria Leaf Spot Small circular spots, light centers [28] 1771 

9 Leaf Mold Yellow upper spots, fuzzy underside [29] 952 

10 Bacterial Spot Small dark spots, yellow halos [30] 2127 

 Total  18160 

 

We trained both the classical ViT and the proposed QViT with the same hyperparameters. These 

hyperparameters are shown in Table 3.  

Table 3. Hyperparameters Used for Training ViT and QViT 

Number Hyperparameter Value 

1 Patch Size 14 

2 Hidden Size 6 

3 
Number of Transformer 

Block 
4 

4 Number of Attention Heads 2 

5 Hidden MLP Size 3 

 

To have a fair comparison, we adhered to a benchmark established by [31]; therefore, we set the same 

trainable parameters for QViT as the ones for classical ViT. Due to the same dimensionality of the input 
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and output of the VQC, the number of qubits should match the size of the corresponding layer in the 

classical neural network. Thus, the quantum architecture utilizes circuits of 4 qubits each for both the 

QMHA layer and the QML layers within each transformer block—16 qubits in total [21]. We compared 

two types of transformers—ViT and QViT; the parameters of the transformers are listed in Table 4. For 

each model, the number of classes was 10, and the number of epochs was 250. 

Table 4. Parameters of the Transformers 

Number Model Total Parameters 

1 ViT 4588 

2 QViT 4024 

 

The key point is that the QViT has fewer parameters compared to the classical ViT. The reason is that the 

proposed VQC has only n free parameters; however, a classical fully connected layer bias has 
2n n+

parameter.  

The classical model components and baseline were implemented using Jax [32] and Flax [33].These tools 

were also used to train both the classical and quantum-based models. The VQCs were implemented, 

trained, and executed through numerical simulation on the classical computer using Tensor Circuit [34]. 

4-3- Performance Analysis 

In this study, the performance of the quantum model during the training and validation process is 

evaluated using the Area Under the Curve (AUC) metric. Specifically, we adopt the same training–

validation–test split utilized by Andrews et al. [34]. Our dataset is divided into 13,620 images for training, 

1,816 images for validation, and 2,724 images for testing. Figs. 5 illustrate the training AUC, represented 

by the red line, and the validation AUC, shown by the blue line. The training AUC exhibits a rapid 

increase in the early epochs, reaching near-perfect performance by around the 75th epoch and continuing 

to improve gradually thereafter. In contrast, the validation AUC also shows a steady increase but at a 

slower rate compared to the training performance. This divergence between the training and validation 

AUC curves suggests that the model may be overfitting to the training data, a common challenge in ML 
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that requires careful monitoring and mitigation techniques to ensure robust generalization on unseen data. 

We calculate the AUC for each epoch across all model configurations. At the conclusion of the training, 

we select the parameters corresponding to the epoch that yields the highest validation AUC and 

subsequently reassess these parameters on a separate hold-out test set to derive the final test AUC. This 

approach allows us to gauge our model's proficiency in accurately detecting and categorizing various 

tomato leaf diseases, which is crucial for facilitating early diagnosis and enhancing agricultural practices. 

Additionally, it is observed that the training and validation loss curves do not converge throughout the 

250 epochs of training. The significant and persistent gap between the two loss curves indicates that the 

model is unable to generalize well to the validation data, implying that it has overfit to the training data. A 

confusion matrix, illustrated in Fig. 6, is also employed to further evaluate the model’s performance 

across different classes. In this matrix, each row represents actual classes, while each column represents 

the model’s predictions, with the main diagonal elements indicating correctly classified samples and the 

off-diagonal elements showing misclassified samples in other classes. The confusion matrix reveals that 

the model performs particularly well in classifying yellow leaf curl virus with 473 correct predictions and 

limited misclassifications, indicating strong feature learning for this disease. It also performs reasonably 

well for Spider mites and Target spot, though moderate misclassification occurs in classes like Healthy, 

Late blight, and Septoria leaf spot. However, the model struggles with Early blight and Bacterial spot, 

frequently misclassifying them as other diseases, possibly due to overlapping visual features. This 

suggests a need for improved feature extraction or addressing class imbalance, as some underrepresented 

classes, such as Early blight and mosaic virus, show weaker performance. Incorporating data 

augmentation may help reduce misclassification and strengthen model accuracy across all classes. 
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Fig. 5. Performance of the Quantum Model During Training and Validation 

 

 

Fig. 6. Confusion matrix illustrating the model's classification accuracy for tomato leaf diseases. 
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Moreover, it is essential to understand the concepts of Precision and Recall, which are crucial metrics for 

evaluating classification models. Precision refers to the ratio of true positive predictions to the total 

predicted positives, indicating the accuracy of the positive predictions made by the model. It is calculated 

as shown in Eq. (1): 

0P 1re isi n 0c o
TP

TP FP
= 

+
 (1) 

where TP (True Positives) is the number of correctly identified positive samples, and FP (False Positives) 

is the number of incorrectly identified positives. Recall, on the other hand, is the ratio of true positive 

predictions to the actual positive samples, reflecting the model’s ability to identify all relevant instances. 

It is expressed as shown in Eq. (2): 

0R 1ec l 0al
TP

TP FN
= 

+
 (2) 

where FN (False Negatives) represents the number of actual positives that were not identified. There is 

often a trade-off between precision and recall, where increasing one may decrease the other. 

In the context of our study, the ViT model demonstrated superior performance metrics compared to the 

QViT model. This is reflected in its higher accuracy, AUC, recall, and precision. High precision and 

recall values for ViT suggest that it has effectively learned to classify diseases with fewer 

misclassifications, contributing to its overall reliability in detecting and categorizing tomato leaf diseases. 

4-4- Results 

The parameters—AUC, Acc, and Loss—of each model have been computed at the end of each epoch, and 

they are shown in Table 5. 

Table 5. Computed Parameters of Each Model 

Number Model AUC Accuracy Precision Recall Loss 

1 ViT 0.95 72.15 65.54 61.96 0.84 

2 QViT 0.92 66.85 60.29 53.95 0.96 
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Moreover, the train time and the total time of each model, calculated at the end of the process, are 

presented in Table 6.  

The QViT model required a total training time of 7792.68 seconds and an overall time of 10456.41 

seconds (including evaluations), achieving an AUC of 92.76, a loss of 0.96, an accuracy of 66.85%, a 

recall of 53.95%, and a precision of 60.29%. In contrast, the ViT model trained significantly faster, with a 

training time of only 686.80 seconds and a total time of 1031.72 seconds, resulting in a higher AUC of 

95.11, a lower loss of 0.84, and better accuracy at 72.15%. ViT also showed improved recall (61.96%) 

and precision (65.54%) compared to QViT.  

These findings suggest that ViT outperformed QViT across key metrics, including accuracy, AUC, recall, 

and precision, while also requiring significantly less computational time. The faster training and 

evaluation times for ViT can be attributed to its execution on a classical computing platform, which suits 

its architecture well. In contrast, QViT's slower performance and slightly lower metrics are likely due to 

the fact that it was executed on classical hardware, which is suboptimal for quantum-inspired models that 

are designed to benefit from quantum computing environments. Consequently, ViT appears to be more 

efficient and effective in this classical setting, while QViT may realize its full potential only on a quantum 

computing platform. 

Table 6. Processing Time of the Models 

Number Model Train Time (s) Total Time (s) 

1 ViT 686.80s 1031.72s 

2 QViT 7792.68s 10456.41s 

 

5- Conclusion 

Tomato leaf disease identification is a crucial and challenging task due to the variability and complexity 

of diseased leaf images. By incorporating Variational Quantum Circuits (VQCs) into the attention 

mechanisms and multi-layer perceptron, a Quantum Vision Transformer model was developed for this 

purpose. This model leverages quantum computing to enhance the accuracy and efficiency of disease 
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classification. The ViT model achieved an AUC of 0.95 and an accuracy of 72.15%, while the QViT 

model reached an AUC of 0.928 and an accuracy of 66.85%. 

This study demonstrates that incorporating quantum circuits into the QViT model, along with the Multi-

MHA mechanism, has the potential to improve accuracy and efficiency in tomato leaf disease 

identification. The MHA mechanism, by enabling simultaneous focus on different regions of an image, 

boosts the model’s processing speed and provides it with the capability to analyze complex features in a 

shorter time. 

However, it is essential to note that this paper lacks substantial discussion on the practical implications of 

the QViT approach in real-world agricultural settings, particularly regarding the increased computational 

resources required for its implementation. Given these challenges, further research is necessary to explore 

solutions that can optimize computational efficiency and reduce the resource demands of the QViT 

model. This is especially pertinent for smaller farms or environments with limited resources, where the 

adoption of such technologies could be hindered. 

Furthermore, the current limitations of the QViT model, particularly in classical computing infrastructure, 

may significantly impact its practical implementation. The lack of memory for utilizing larger datasets 

restricts the execution speed of this model, and the inability to balance the dataset may detract from the 

training quality for each class. Addressing these limitations will be crucial for improving the model's 

applicability in real-world scenarios. 

Finally, framing this research as an exploratory study testing the integration of quantum circuits into DL, 

rather than asserting superiority over classical models, could provide a more accurate context for our 

findings. This shift in perspective allows for a more comprehensive understanding of the potential 

benefits and future directions for integrating quantum technologies into agricultural applications. 
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