[1] A. Mellit, M. Benghanem, A.H. Arab, A. Guessoum, Modelling of sizing the photovoltaic system parameters using artificial neural network, in: Proc. of IEEE, CCA, 2003, pp. 353-357.
[2] M. Nehrir, C. Wang, K. Strunz, H. Aki, R. Ramakumar, J. Bing, Z. Miao, Z. Salameh, A review of hybrid renewable/alternative energy systems for electric power generation: Configurations, control, and applications, IEEE Transactions on Sustainable Energy, 2(4) (2011) 392-403.
[3] E. Lorenz, D. Heinemann, Prediction of solar irradiance and photovoltaic power, (2012).
[4] A. Mellit, Artificial Intelligence technique for modelling and forecasting of solar radiation data: a review, International Journal of Artificial intelligence and soft computing, 1(1) (2008) 52-76.
[5] K. Tanaka, K. Uchida, K. Ogimi, T. Goya, A. Yona, T. Senjyu, T. Funabashi, C.-H. Kim, Optimal operation by controllable loads based on smart grid topology considering insolation forecasted error, IEEE transactions on smart grid, 2(3) (2011) 438-444.
[6] P. Zhang, Generation Scheduling for Supply and Demand Balancing in Power Systems with Renewable Power Generation, Kyushu University, 2013.
[7] A. Yona, T. Senjyu, T. Funabshi, H. Sekine, Application of neural network to 24-hours-ahead generating power forecasting for PV system, IEEJ Transactions on Power and Energy, 128 (2008) 33-39.
[8] S. Cao, W. Weng, J. Chen, W. Liu, G. Yu, J. Cao, Forecast of solar irradiance using chaos optimization neural networks, in: Power and Energy Engineering Conference, 2009. APPEEC 2009. Asia-Pacific, IEEE, 2009, pp. 1-4.
[9] G. Capizzi, C. Napoli, F. Bonanno, Innovative second-generation wavelets construction with recurrent neural networks for solar radiation forecasting, IEEE Transactions on neural networks and learning systems, 23(11) (2012) 1805-1815.
[10] J. Shi, W.-J. Lee, Y. Liu, Y. Yang, P. Wang, Forecasting power output of photovoltaic systems based on weather classification and support vector machines, IEEE Transactions on Industry Applications, 48(3) (2012) 1064-1069.
[11] T.-C. Yu, H.-T. Chang, The forecast of the electrical energy generated by photovoltaic systems using neural network method, in: Electric Information and Control Engineering (ICEICE), 2011 International Conference on, IEEE, 2011, pp. 2758-2761.
[12] S. Wang, N. Zhang, Y. Zhao, J. Zhan, Photovoltaic system power forecasting based on combined grey model and BP neural network, in: Electrical and Control Engineering (ICECE), 2011 International Conference on, IEEE, 2011, pp. 4623-4626.
[13] T. Kohonen, The self-organizing map, Proceedings of the IEEE, 78(9) (1990) 1464-1480.
[14] C. Cortes, V. Vapnik, Support-vector networks, Machine learning, 20(3) (1995) 273-297.
[15] A.K. Yadav, S. Chandel, Solar radiation prediction
using Artificial Neural Network techniques: A review, Renewable and Sustainable Energy Reviews, 33 (2014) 772-781.
[16] S.A. Kalogirou, Artificial neural networks in renewable energy systems applications: a review, Renewable and sustainable energy reviews, 5(4) (2001) 373-401.
[17] H. Esen, M. Inalli, A. Sengur, M. Esen, Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system, Energy and Buildings, 40(6) (2008) 1074-1083.
[18] C. Paoli, C. Voyant, M. Muselli, M.-L. Nivet, Forecasting of preprocessed daily solar radiation time series using neural networks, Solar Energy, 84(12) (2010) 2146-2160.
[19] M.S. Bobi, Use, operation and maintenance of renewable energy systems: Experiences and future approaches, Springer, 2014.
[20] N. Sengupta, S. Aloka, B. Narayanaswamy, H. Ismail, S. Mathew, Time series data mining for demand side decision support, in: Innovative Smart Grid Technologies-Asia (ISGT Asia), 2013 IEEE, IEEE, 2013, pp. 1-6.
[21] Y. Yang, L. Dong, Short-term PV generation system direct power prediction model on wavelet neural network and weather type clustering, in: Intelligent Human- Machine Systems and Cybernetics (IHMSC), 2013 5th International Conference on, IEEE, 2013, pp. 207-211.
[22] R. Li, H. Wang, Y. Cui, X. Huang, Solar flare forecasting using learning vector quantity and unsupervised clustering techniques, SCIENCE CHINA Physics, Mechanics & Astronomy, 54(8) (2011) 1546-1552.
[23] K. Benmouiza, A. Cheknane, Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models, Energy Conversion and Management, 75 (2013) 561-569.
[24] M.I. Malinen, R. Mariescu-Istodor, P. Fränti, K-meansā: Clustering by gradual data transformation, Pattern Recognition, 47(10) (2014) 3376-3386.
[25] http://cs.uef.fi/sipu/clustering/animator/.
[26] D.J. Ketchen Jr, C.L. Shook, The application of cluster analysis in strategic management research: an analysis and critique, Strategic management journal, (1996) 441-458.
[27] http://cs.uef.fi/sipu/datasets.
[28] https://archive.ics.uci.edu/ml/datasets.
[29] http://mesonet.agron.iastate.edu
[30] D. Arthur, S. Vassilvitskii, k-means++: The advantages of careful seeding, in: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, 2007, pp. 1027-1035.
[31] J. Herbert, J. Yao, A game-theoretic approach to competitive learning in self-organizing maps, Advances in Natural Computation, (2005) 418-418.