[1] A. H. Golnabi, P. M. Meaney, and K. D. Paulsen, “Tomographic Microwave Imaging With Incorporated Prior Spatial Information,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, pp. 2129-2136, 2013.
[2] E. Porter, E. Kirshin, A. Santorelli, M. Coates, and M. Popovi, “Time-Domain Multistatic Radar System for Microwave Breast Screening,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 229-232, 2013.
[3] M. O. Halloran, E. Jones, and M. Glavin, “Quasi- Multistatic MIST Beamforming for the Early Detection of Breast Cancer,” IEEE Transactions on Biomedical Engineering, vol. 57, pp. 830-840, 2010.
[4] A. Shahzad, M. O. Halloran, E. Jones, and M. Glavin, “Prefiltered Beamforming for Early-Stage Breast Cancer Detection,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 500-503, 2013.
[5] A. M. Hassan and M. El-Shenawee, “Review of Electromagnetic Techniques for Breast Cancer Detection,” IEEE Reviews in Biomedical Engineering, vol. 4, pp. 103-118, 2011.
[6] D. Gibbins, M. Klemm, I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, “A Comparison of a Wide-Slot and a Stacked Patch Antenna for the Purpose of Breast Cancer Detection,” IEEE Transactions on Antennas and Propagation, vol. 58, pp. 665-674, 2010.
[7] M. Bassi, M. Caruso, M. S. Khan, A. Bevilacqua, A. D. Capobianco, and A. Neviani, “An Integrated Microwave Imaging Radar With Planar Antennas for Breast Cancer Detection,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, pp. 2108-2118, 2013.
[8] T. Sugitani, S. Kubota, A. Toya, X. Xiao, and T. Kikkawa, “A Compact 4* 4 Planar UWB Antenna Array for 3-D Breast Cancer Detection,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 733-736, 2013.
[9] C. H. See, R. A. Abd-Alhameed, S. W. J. Chung, D. Zhou, H. Al-Ahmad, and P. S. Excell, “The Design of a Resistively Loaded Bowtie Antenna for Applications in Breast Cancer Detection Systems,” IEEE Transactions on Antennas and Propagation, vol. 60, pp. 2526-2530, 2012.
[10] M. Jalilvand, X. Li, J. Kowalewski, and T. Zwick, “Broadband miniaturised bow-tie antenna for 3D microwave tomography,” Electronics Letters, vol. 50, pp. 244-246, 2014.
[11] M. Jalilvand, X. Li, L. Zwirello, and T. Zwick, “Ultra wideband compact near-field imaging system for breast cancer detection,” IET Microwaves, Antennas & Propagation, vol. 9, pp. 1009-1014, 2015.
[12] M. Moosazadeh and S. Kharkovsky, “Design of Ultra- Wideband Antipodal Vivaldi Antenna for Microwave Imaging Applications,” in 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 2015, pp. 1-4.
[13] J. Bourqui, M. Okoniewski, and E. C. Fear, “Balanced Antipodal Vivaldi Antenna With Dielectric Director for Near-Field Microwave Imaging,” IEEE Transactions on Antennas and Propagation, vol. 58, pp. 2318-2326, 2010.
[14] R. Telikepalli, “Design of a wide band microstrip patch for use in a phased array antenna for mobile satellite communications,” in Electrical and Computer Engineering, 1995. Canadian Conference on, 1995, pp. 1173-1175 vol.2.
[15] P. J. Gibson, “The Vivaldi Aerial,” in Microwave Conference, 1979. 9th European, 1979, pp. 101-105.
[16] G. E. Ponchak, J. L. Jordan, and C. T. Chevalier, “Characteristics of Double Exponentially Tapered Slot Antenna (DETSA) Conformed in the Longitudinal Direction Around a Cylinder,” IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 60-63, 2007.
[17] Y. J. Cheng, W. Hong, and K. Wu, “Design of a Monopulse Antenna Using a Dual V-Type Linearly Tapered Slot Antenna (DVLTSA),” IEEE Transactions on Antennas and Propagation, vol. 56, pp. 2903-2909, 2008.
[18] H. Kim and C. W. Jung, “Ultra-wideband endfire directional tapered slot antenna using CPW to wide-slot transition,” Electronics Letters, vol. 46, pp. 1183-1185, 2010.
[19] F. Zhu, S. Gao, A. T. S. Ho, R. A. Abd-Alhameed, C. H. See, J. Li, et al., “Miniaturized Tapered Slot Antenna With Signal Rejection in 5-6 GHz Band Using a Balun,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 507-510, 2012.
[20] K. Ebnabbasi, D. Busuioc, R. Birken, and M. Wang, “Taper Design of Vivaldi and Co-Planar Tapered Slot Antenna (TSA) by Chebyshev Transformer,” IEEE Transactions on Antennas and Propagation, vol. 60, pp. 2252-2259, 2012.
[21] K. Ebnabbasi, S. Sczyslo, and M. Mohebbi, “UWB Performance of Coplanar Tapered Slot Antennas,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 749-752, 2013.
[22] E. Gazit, “Improved design of the Vivaldi antenna,” IEE Proceedings H - Microwaves, Antennas and Propagation, vol. 135, pp. 89-92, 1988.
[23] A. M. Abbosh, “Miniaturized Microstrip-Fed Tapered-Slot Antenna With Ultrawideband Performance,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 690-692, 2009.
[24] P. Fei, Y. C. Jiao, W. Hu, and F. S. Zhang, “A Miniaturized Antipodal Vivaldi Antenna With Improved Radiation Characteristics,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 127-130, 2011.
[25] J. Bai, S. Shi, and D. W. Prather, “Modified Compact Antipodal Vivaldi Antenna for 4-50 GHz UWB Application,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, pp. 1051-1057, 2011.
[26] G. K. Pandey, H. Verma, and M. K. Meshram, “Compact antipodal Vivaldi antenna for UWB applications,” Electronics Letters, vol. 51, pp. 308-310, 2015.
[27] Z. Wang, Y. Yin, J. Wu, and R. Lian, “A Miniaturized CPW-Fed Antipodal Vivaldi Antenna With Enhanced Radiation Performance for Wideband Applications,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 16-19, 2016.
[28] M. Moosazadeh and S. Kharkovsky, “A Compact High- Gain and Front-to-Back Ratio Elliptically Tapered Antipodal Vivaldi Antenna With Trapezoid-Shaped Dielectric Lens,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 552-555, 2016.
[29] J. D. S. Langley, P. S. Hall, and P. Newham, “Novel ultrawide-bandwidth Vivaldi antenna with low crosspolarisation,”
Electronics Letters, vol. 29, pp. 2004-2005, 1993.
[30] S. M. Salvador and G. Vecchi, “Experimental Tests of Microwave Breast Cancer Detection on Phantoms,” IEEE Transactions on Antennas and Propagation, vol. 57, pp. 1705-1712, 2009.
[31] A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition: Artech House, 2005.
[32] K. Hettak, N. Dib, A. Sheta, A. A. Omar, G. Y. Delisle, M. Stubbs, et al., “New miniature broadband CPW-to-slotline transitions,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, pp. 138-146, 2000.
[33] T. Q. Ho and S. M. Hart, “A broad-band coplanar waveguide to slotline transition,” IEEE Microwave and Guided Wave Letters, vol. 2, pp. 415-416, 1992.
[34] X. Ye, M. He, P. Zhou, and H. Sun, “A compact single-feed circularly polarized microstrip antenna with symmetric and wide-beamwidth radiation pattern,” International Journal of Antennas and Propagation, vol. 2013, 2013.
[35] K. P. Ma, Y. Qian, and T. Itoh, “Analysis and applications of a new CPW-slotline transition,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, pp. 426-432, 1999.
[36] L. G. Maloratsky, Integrated Microwave Front-ends with Avionics Applications: Artech House, 2012.
[37] “Unapproved Revised Pc95.1b (Draft IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 Ghz Amendment 1: Specific Absorption Rate (SAR) Limits for the Pinna) (Amendment 1 to IEEE Std C95.1- 1991 (1999 Ed.) C95.1b) Replaced by Approved IEEE Draft,” IEEE Std PC95.1/D2.4, p. 1, 2005.
[38] K. Do-Hoon, “Effect of antenna gain and group delay variations on pulse-preserving capabilities of ultrawideband antennas,” IEEE Transactions on Antennas and Propagation, vol. 54, pp. 2208-2215, 2006.