[1] W. Cao, H. Bu, M. Vinet, M. Cao, S. Takagi, S. Hwang, T. Ghani, K. Banerjee, The future transistors, Nature, 620(7974) (2023) 501–515.
[2] H.H. Radamson, Y. Miao, Z. Zhou, Z. Wu, Z. Kong, J. Gao, H. Yang, Y. Ren, Y. Zhang, J. Shi, CMOS scaling for the 5 nm node and beyond: Device, process and technology, Nanomaterials, 14(10) (2024) 837.
[3] R.K. Ratnesh, A. Goel, G. Kaushik, H. Garg, M. Singh, B. Prasad, Advancement and challenges in MOSFET scaling, Materials Science in Semiconductor Processing, 134 (2021) 106002.
[4] A. Girardi, L. Compassi-Severo, P.C.C. de Aguirre, Design techniques for ultra-low voltage analog circuits using CMOS characteristic curves: A practical tutorial, Journal of Integrated Circuits and Systems, 17(1) (2022) 1–11.
[5] K. Singh, P. Jain, BSIM3v3 to EKV2. 6 Model Parameter Extraction and Optimisation using LM Algorithm on 0.18 μ Technology node, International Journal of Electronics and Telecommunications, 64(1) (2018) 5–11.
[6] K. Mistry, G. Grula, J. Sleight, L. Bai, R. Stephany, R. Flatley, P. Skerry, A 2.0 V, 0.35/spl mu/m partially depleted SOI-CMOS technology, in: International Electron Devices Meeting. IEDM Technical Digest, IEEE, 1997, pp. 583–586.
[7] B.M. Tenbroek, M.S. Lee, W. Redman-White, J.T. Bunyan, M.J. Uren, Self-heating effects in SOI MOSFETs and their measurement by small signal conductance techniques, IEEE Transactions on Electron Devices, 43(12) (1996) 2240–2248.
[8] K.J. Kuhn, Considerations for ultimate CMOS scaling, IEEE Transactions on Electron Devices, 59(7) (2012) 1813–1828.
[9] M.T. Bohr, R.S. Chau, T. Ghani, K. Mistry, The high-k solution, IEEE spectrum, 44(10) (2007) 29–35.
[10] W. Sansen, Biasing for zero distortion: Using the ekv\/bsim6 expressions, IEEE Solid-State Circuits Magazine, 10(3) (2018) 48–53.
[11] W. Sansen, Minimum power in analog amplifying blocks: Presenting a design procedure, IEEE Solid-State Circuits Magazine, 7(4) (2015) 83–89.
[12] C. Enz, F. Chicco, A. Pezzotta, Nanoscale MOSFET modeling: Part 2: Using the inversion coefficient as the primary design parameter, IEEE Solid-State Circuits Magazine, 9(4) (2017) 73–81.
[13] C. Enz, F. Chicco, A. Pezzotta, Nanoscale MOSFET modeling: Part 1: The simplified EKV model for the design of low-power analog circuits, IEEE Solid-State Circuits Magazine, 9(3) (2017) 26–35.
[14] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors, in: IEEE International Electron Devices Meeting 2003, IEEE, 2003, pp. 11.16. 11–11.16. 13.
[15] E.A. Vittoz, Micropower techniques, Design of VLSI circuits for telecommunication and signal processing, (1994) 53–97.
[16] C.C. Enz, F. Krummenacher, E.A. Vittoz, An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications, Analog integrated circuits and signal processing, 8(1) (1995) 83–114.
[17] G. Khademevatan, A. Jalali, Inversion Coefficient as a Key Design Parameter in MOS Device Performance, in: 2024 32nd International Conference on Electrical Engineering (ICEE), IEEE, 2024, pp. 1–7.
[18] G. Khademevatan, A. Jalali, Study of linearity indices in analog/RF circuits using EKV model and comparing the results in three different CMOS processes, in: 2022 Iranian International Conference on Microelectronics (IICM), IEEE, 2022, pp. 1–7.
[19] C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, A 22nm high-performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high-density MIM capacitors, in: 2012 symposium on VLSI technology (VLSIT), IEEE, 2012, pp. 131–132.
[20] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, A 45nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging, in: 2007 IEEE international electron devices meeting, IEEE, 2007, pp. 247–250.
[21] W.G. Tuni, Design Methodology of Analog and RF Building Blocks Based on Precomputed Actual Device Technology Data, University of Florida, 2020.
[22] B. Razavi, RF Microelectronics (2nd Edition) (Prentice Hall Communications Engineering and Emerging Technologies Series), Prentice Hall Press, 2011.
[23] IC LAB of EPFL University, EKV MOSFET MODEL, in, April. 30, 2024.
[24] G. Guitton, Design Methodologies for multi-mode and multi-standard Low-Noise Amplifiers, Université de Bordeaux, 2017.
[25] C.C. Enz, E.A. Vittoz, Charge-based MOS transistor modeling: the EKV model for low-power and RF IC design, John Wiley & Sons, 2006.
[26] D. Binkley, Tradeoffs and Optimization in Analog CMOS Design, John Wiley & Sons, Limited, 2008.