[1] E.G. Marin, M. Perucchini, D. Marian, G. Iannaccone, G. Fiori, Modeling of Electron Devices Based on 2-D Materials, IEEE Transactions on Electron Devices, 65(10) (2018) 4167-4179.
[2] J. Yan, Z.X. Shen, Electronic Devices Based on Transition Metal Dichalcogenides, in: N.S. Arul, V.D. Nithya (Eds.), Springer Singapore, Singapore, 2019, pp. 331-355.
[3] B. Zhao, D. Shen, Z. Zhang, P. Lu, M. Hossain, J. Li, B. Li, X. Duan, 2D Metallic Transition-Metal Dichalcogenides: Structures, Synthesis, Properties, and Applications, Advanced Functional Materials, 31(48) (2021) 2105132-2105132.
[4] G. Iannaccone, F. Bonaccorso, L. Colombo, G. Fiori, Quantum engineering of transistors based on 2D materials heterostructures, Nature Nanotechnology, 13(3) (2018) 183-191.
[5] I.C. Cherik, S. Mohammadi, P.K. Hurley, L. Ansari, F. Gity, Investigating vertical charge plasma tunnel field effect transistors beyond semiclassical assumptions, Scientific Reports, 15(1) (2025) 4682.
[6] X. Yang, R. He, Z. Lu, Y. Chen, L. Liu, D. Lu, L. Ma, Q. Tao, L. Kong, Z. Xiao, S. Liu, Z. Li, S. Ding, X. Liu, Y. Li, Y. Wang, L. Liao, Y. Liu, Large-scale sub-5-nm vertical transistors by van der Waals integration, Nature Communications, 15(1) (2024) 7676.
[7] L. Merces, L.M.M. Ferro, A. Nawaz, P. Sonar, Advanced Neuromorphic Applications Enabled by Synaptic Ion-Gating Vertical Transistors, Advanced Science, 11(27) (2024) 2305611.
[8] Z. Mei, X. Li, L. Liang, Y. Li, Z. Zhao, Z. Zhou, Q. Li, S. Fan, J. Wang, Y. Wei, Two-Dimensional Vertical Transistor with One-Dimensional van der Waals Contact, ACS Nano, 18(41) (2024) 28301-28310.
[9] Y. Lv, W. Qin, C. Wang, L. Liao, X. Liu, Recent Advances in Low-Dimensional Heterojunction-Based Tunnel Field Effect Transistors, Advanced Electronic Materials, 5(1) (2019) 1800569-1800569.
[11] L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Field-effect tunneling transistor based on vertical graphene heterostructures, Science, 335(6071) (2012) 947-950.
[12] M. Ebrahimi, A. Horri, M. Sanaeepur, M.B. Tavakoli, A comparative computational study of tunneling transistors based on vertical graphene-hBCN heterostructures, Journal of Applied Physics, 127(8) (2020) 084504-084504.
[13] A. Horri, R. Faez, M. Pourfath, G. Darvish, Modeling of a Vertical Tunneling Transistor Based on Graphene-MoS2 Heterostructure, IEEE Transactions on Electron Devices, 64(8) (2017) 3459-3465.
[14] J. Park, T.W. Kim, G.H. Oh, J.G. An, S.I. Kim, J.C. Shin, Ultralow Subthreshold Swing 2D/2D Heterostructure Tunneling Field-Effect Transistor with Ion-Gel Gate Dielectrics, ACS Applied Electronic Materials, 5(1) (2023) 196-204.
[15] D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S. Kraemer, P.M. Ajayan, K. Banerjee, A subthermionic tunnel field-effect transistor with an atomically thin channel, Nature, 526(7571) (2015) 91-95.
[16] W.J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, X. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters, Nature Materials, 12(3) (2013) 246-252.
[17] J.H. Lee, D.H. Shin, H. Yang, N.B. Jeong, D.H. Park, K. Watanabe, T. Taniguchi, E. Kim, S.W. Lee, S.H. Jhang, B.H. Park, Y. Kuk, H.J. Chung, Semiconductor-less vertical transistor with I ON/I OFF of 106, Nature Communications, 12(1) (2021) 1-8.
[18] L. Liu, L. Kong, Q. Li, C. He, L. Ren, Q. Tao, X. Yang, J. Lin, B. Zhao, Z. Li, Y. Chen, W. Li, W. Song, Z. Lu, G. Li, S. Li, X. Duan, A. Pan, L. Liao, Y. Liu, Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors, Nature Electronics, 4(5) (2021) 342-347.
[19] R. Abbasi, R. Faez, A. Horri, M.K. Moravvej-Farshi, Modeling of a vertical tunneling transistor based on Gr-hBN- χ 3borophene heterostructure, Journal of Applied Physics, 132(3) (2022) 034302-034302.
[20] F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren, G. Gou, Y. Sun, Y. Yang, T.L. Ren, Vertical MoS2 transistors with sub-1-nm gate lengths, Nature, 603(7900) (2022) 259-264.
[21] A.J. Mannix, X.F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science, 350(6267) (2015) 1513-1516.
[22] B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two-dimensional boron sheets, Nature Chemistry, 8(6) (2016) 563-568.
[23] M. Ou, X. Wang, L. Yu, C. Liu, W. Tao, X. Ji, L. Mei, The Emergence and Evolution of Borophene, Advanced Science, 8(12) (2021) 2001801-2001801.
[24] D. Li, J. Gao, P. Cheng, J. He, Y. Yin, Y. Hu, L. Chen, Y. Cheng, J. Zhao, 2D Boron Sheets: Structure, Growth, and Electronic and Thermal Transport Properties, Advanced Functional Materials, 30(8) (2020) 1-32.
[25] G.J. Adekoya, O.C. Adekoya, M. Muloiwa, E.R. Sadiku, W.K. Kupolati, Y. Hamam, Advances In Borophene: Synthesis, Tunable Properties, and Energy Storage Applications, Small, 20(40) (2024) 2403656.
[26] R.K. Mishra, J. Sarkar, K. Verma, I. Chianella, S. Goel, H.Y. Nezhad, Borophene: A 2D wonder shaping the future of nanotechnology and materials science, Nano Materials Science, 7(2) (2025) 198-230.
[27] Y. Park, Y. Wang, V. Gladkikh, D. Hedman, X. Kong, F. Ding, High temperature phases of borophene: borophene glass and liquid, Nanoscale Horizons, 8(3) (2023) 353-360.
[28] R. Abbasi, R. Faez, A. Horri, M.K. Moravvej-Farshi, Tight-Binding Model of χ 3 and β 12 Structures of Borophene, Journal of Electronic Materials, 52(4) (2023) 2544-2552.
[29] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, Journal of Physics Condensed Matter, 21(39) (2009).
[30] B. Silvi, A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions, in, 1994, pp. 683-686.
[31] J.C. Slater, G.F. Koster, Simplified LCAO method for the periodic potential problem, Physical Review, 94(6) (1954) 1498-1524.
[32] S. Fang, R. Kuate Defo, S.N. Shirodkar, S. Lieu, G.A. Tritsaris, E. Kaxiras, Ab initio tight-binding Hamiltonian for transition metal dichalcogenides, Physical Review B - Condensed Matter and Materials Physics, 92(20) (2015) 1-15.
[33] R. Fletcher, M.J.D. Powell, A Rapidly Convergent Descent Method for Minimization, The Computer Journal, 6(2) (1963) 163-168.
[34] M.P. Anantram, M.S. Lundstrom, D.E. Nikonov, Modeling of nanoscale devices, Proceedings of the IEEE, 96(9) (2008) 1511-1550.
[35] S. Datta, Quantum transport: Atom to transistor, 2005.
[36] M. Pourfath, Green’s Function Formalism, in: M. Pourfath (Ed.), Springer Vienna, Vienna, 2014, pp. 105-156.
[37] H. Kolavada, S. Singh, I. Lukačević, P.N. Gajjar, S.K. Gupta, Quantum capacitance of multi-layered δ-6 borophene: A DFT study, Electrochimica Acta, 439 (2023) 141589-141589.
[38] J. Guo, A. Javey, H. Dai, M. Lundstrom, Performance analysis and design optimization of near ballistic carbon nanotube field-effect transistors, in, pp. 703-706.
[39] R. Abbasi, R. Faez, A. Horri, M.K. Moravvej-Farshi, Numerical Study of a Vertical Tunneling Transistor Based on Gr/BC2N/BC6N and BC2N′/hBN/BC2N′ Heterostructures, ACS Applied Electronic Materials, 5(7) (2023) 3612-3624.