[1] V. Kumar et al., “Factors affecting direct lightning strike damage to fiber reinforced composites: A review,” Compos. Part B Eng., vol. 183, p. 107688, Feb. 2020, doi: 10.1016/J.COMPOSITESB.2019.107688.
[2] W. Adyatma, S. Hidayat, and R. Zoro, “Tropical Lightning Damage on Commercial Aircraft,” in 2021 IEEE Aerospace Conference (50100), 2021, pp. 1–9. doi: 10.1109/AERO50100.2021.9438346.
[3] X. Ma, F. Wang, Z. Wang, Y. Li, and B. Xu, “Thermal dynamic damage of aircraft composite material suffered from lightning channel attachment based on moving mesh method,” Compos. Sci. Technol., vol. 214, p. 109003, Sep. 2021, doi: 10.1016/J.COMPSCITECH.2021.109003.
[4] F. Padoan, D. Clark, A. Haddad, C. Karch, and P. Westphal, “Initiation of Electrical Discharge at the Triple Junction of the Lightning Protection of an Aircraft Radome,” IEEE Electr. Insul. Mag., vol. 39, no. 1, pp. 6–16, 2023, doi: 10.1109/MEI.2023.9999633.
[5] H. Neyshabouri and M. Niasati, “Transient investigations on lightning overvoltages applied on oil tanks roof considering grounding configurations,” Electr. Eng., vol. 104, no. 4, pp. 2437–2447, 2022, doi: 10.1007/s00202-021-01452-w.
[6] Y. S. Kang, S. W. Park, J. S. Roh, and R. S. Myong, “Computational Investigation of Effects of Expanded Metal Foils on the Lightning Protection Performance of a Composite Rotor Blade,” Int. J. Aeronaut. Sp. Sci., vol. 22, no. 1, pp. 203–221, 2021, doi: 10.1007/s42405-020-00288-1.
[7] W. Matsunaga, S. Imai, Y. Mizutani, T. Yasuoka, and A. Todoroki, “Estimation of the moisture absorption rate of carbon fiber reinforced plastic using electromagnetic induction testing,” Compos. Part A Appl. Sci. Manuf., vol. 177, p. 107934, Feb. 2024, doi: 10.1016/J.COMPOSITESA.2023.107934.
[8] U. Alkasi, “Analysis and Comparison of Lightning Indirect Effects in Aluminum, Composite Fiber Reinforced Plastic and Expanded Copper Foil embedded CFRP Aircraft with EMA3D,” in 2023 7th International Electromagnetic Compatibility Conference (EMC Turkiye), 2023, pp. 1–8. doi: 10.1109/EMCTurkiye59424.2023.10287521.
[9] S.-Y. Kim, J.-S. Park, and W.-S. Lee, “Development and verification of indirect lightning-induced transient protection circuit for avionics system,” Appl. Comput. Electromagn. Soc. J., vol. 36, no. 6, pp. 670–675, 2021, doi: 10.47037/2020.aces.j.360608.
[10] J. Jo, Y. Kim, D. Kim, H. Lee, and R. S. Myong, “Effect of Shielding and Drain Wire on Lightning-Induced Currents in Rotorcraft Cables,” IEEE Trans. Electromagn. Compat., vol. 64, no. 6, pp. 2015–2023, 2022, doi: 10.1109/TEMC.2022.3198697.
[11] H. P. Rimal et al., “Protection From Indirect Lightning Effects for Power Converters in Avionic Environment: Modeling and Experimental Validation,” IEEE Trans. Ind. Electron., vol. 68, no. 9, pp. 7850–7862, 2021, doi: 10.1109/TIE.2020.3013794.
[12] M. Wyatt, D; & Tooley, Aircraft Electrical and Electronic Systems, 2nd ed. Routledge, 2018. doi: 10.1201/9780429504228.
[13] T. Akay and C. Tarhan, “The effect of global warming and climate changes on aircraft accidents between 2010-2022,” Aircr. Eng. Aerosp. Technol., vol. ahead-of-p, no. ahead-of-print, Jan. 2023, doi: 10.1108/AEAT-03-2023-0081.
[14] L. Nikšić and E. Arıkan Öztürk, “Analysis of ATC-related aviation accidents and incidents,” Aircr. Eng. Aerosp. Technol., vol. 95, no. 6, pp. 890–898, Jan. 2023, doi: 10.1108/AEAT-03-2022-0078.
[15] STD MIL, 464 A Electromagnetic Environmental Effects Requirements for systems. US Department of Defense, 2002.
[16] L. Chemartin et al., “Direct Effects of Lightning on Aircraft Structure Analysis of the Thermal, Electrical and Mechanical Constraints,” Aerosp. Lab, no. 5, pp. 1–15, 2012, [Online]. Available: httpshal.sciencehal-01184416
[17] P. Lalande and A. Delannoy, “Numerical Methods for Zoning Computation,” Aerosp. Lab, no. 5, pp. 1–10, 2012, [Online]. Available: https://hal.science/hal-01184414
[18] H. Neyshabouri and M. Niasati, “Analysis of the electromagnetic effects on the large floating roof oil tanks by nearby lightning strike based on TLM,” J.Electrostat., vol. 129, no. 4, pp. 103927, 2024, doi: 10.1016/j.elstat.2024.103927.
[19] A. Broc et al., “A lightning swept stroke model: A valuable tool to investigate the lightning strike to aircraft,” Aerosp. Sci. Technol., vol. 10, no. 8, pp. 700–708, Dec. 2006, doi: 10.1016/J.AST.2005.10.008.
[20] CST, Reference Manual. Computer Simulation Technology. GmbH, 2020.
[21] J. S. L. Colqui, L. C. T. Eraso, P. T. Caballero, J. P. Filho, and S. Kurokawa, “Implementation of Modal Domain Transmission Line Models in the ATP Software,” IEEE Access, vol. 10, pp. 15924–15934, 2022, doi: 10.1109/ACCESS.2022.3146880.
[22] M. N. Sadiku, Numerical Techniques in Electromagnetics with MATLAB, Third Edit. CRC press, Boca Raton, 2009. doi: https://doi.org/10.1201/9781315222622.
[23] J. S. Odeyemi, A. Vukovic, T. M. Benson, and P. D. Sewell, “A Complex Domain Mapping of the SCN for an Effective PML Implementation in TLM,” IEEE Open J. Antennas Propag., vol. 1, pp. 126–135, 2020, doi: 10.1109/OJAP.2020.2986293.
[24] O. Gassab et al., “Transmission Line Modeling and Crosstalk Analysis of Multibraided Shielded TWP/Twinax Cables,” IEEE Trans. Electromagn. Compat., vol. 64, no. 5, pp. 1560–1573, 2022, doi: 10.1109/TEMC.2022.3179512.
[25] M. Moumou, S. El Adraoui, K. Mounirh, M. Kanjaa, and M. Khalladi, “Efficient ADE-TLM scheme for modeling Drude based graphene in terahertz spectrum,” Prog. Electromagn. Res. Lett., vol. 112, pp. 119–126, 2023, doi: 10.2528/pierl23060904.
[26] M. Apra, M. D’Amore, K. Gigliotti, M. S. Sarto, and V. Volpi, “Lightning Indirect Effects Certification of a Transport Aircraft by Numerical Simulation,” IEEE Trans. Electromagn. Compat., vol. 50, no. 3, pp. 513–523, 2008, doi: 10.1109/TEMC.2008.927738.
[27] M. Zhang and Z. Huang, “Transient current burst analysis induced in cable harness due to direct lightning strike on aircraft,” in 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, 2010, pp. 1197–1200. doi: 10.1109/APEMC.2010.5475508.
[28] F. S. Wang, X. S. Yu, S. Q. Jia, and P. Li, “Experimental and numerical study on residual strength of aircraft carbon/epoxy composite after lightning strike,” Aerosp. Sci. Technol., vol. 75, pp. 304–314, Apr. 2018, doi: 10.1016/J.AST.2018.01.029.
[29] K. Patra, S. Cheruvalath, S. Dhar, B. P. Nayak, A. Gupta, and J. Hansen, “Surrogate Modeling for Predicting Shielded Cable Emissions,” IEEE Trans. Electromagn. Compat., vol. 65, no. 1, pp. 249–256, 2023, doi: 10.1109/TEMC.2022.3225631.
[30] K. Santos et al., “Evaluation of Surface Transfer Impedance of Coaxial Cables,” IEEE Lat. Am. Trans., vol. 18, no. 03, pp. 598–603, 2020, doi: 10.1109/TLA.2020.9082732.
[31] O. Gassab, S. Bouguerra, L. Zhou, and W.-Y. Yin, “Efficient Analytical Model for the Transfer Impedance and Admittance of Noncoaxial/Twinax Braided–Shielded Cables,” IEEE Trans. Electromagn. Compat., vol. 62, no. 6, pp. 2725–2736, 2020, doi: 10.1109/TEMC.2020.2996204.
[32] P. Hu et al., “Measurement Techniques for Electromagnetic Shielding Behavior of Braided-Shield Power Cables: An Overview and Comparative Study,” Meas. Sci. Rev., vol. 19, no. 5, pp. 213–221, 2019, doi: doi:10.2478/msr-2019-0028.
[33] M. Schoeman, E. A. Attardo, and J. S. Castany, “Recent Advances to the Feko Integrated Cable Harness Modeling Tool,” in 2019 International Symposium on Electromagnetic Compatibility - EMC EUROPE, 2019, pp. 1071–1075. doi: 10.1109/EMCEurope.2019.8871980.
[34] C. A. Balanis, Advanced Engineering Electromagnetics. Hoboken, NJ: Wiley, 2012.