[1] D.J. Allstot, X. Li, S. Shekhar, Design considerations for CMOS low-noise amplifiers, in: 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers, IEEE, 2004, pp. 97-100.
[2] B. Razavi, R. Behzad, RF microelectronics, Prentice hall New York, 2012.
[3] T. Taris, J.-B. Begueret, Y. Deval, A 60µW LNA for 2.4 GHz wireless sensors network applications, in: 2011 IEEE Radio Frequency Integrated Circuits Symposium, IEEE, 2011, pp. 1-4.
[4] F. Bruccoleri, E.A. Klumperink, B. Nauta, Wide-band CMOS low-noise amplifier exploiting thermal noise canceling, IEEE Journal of Solid-State Circuits, 39(2) (2004) 275-282.
[5] P.Pouyan, P.Heydari, Assessing a Noise Reduction Method for a Low-Noise Amplifier, TABRIZ JOURNAL OF ELECTRICAL ENGINEERING, 51(2) (2021) 195-203.
[6] M. De Souza, A. Mariano, T. Taris, Reconfigurable inductorless wideband CMOS LNA for wireless communications, IEEE Transactions on Circuits and Systems I: Regular Papers, 64(3) (2016) 675-685.
[7] R. Eskandari, A. Ebrahimi, H. Faraji, An area-efficient broadband balun-LNA-mixer front-end for multi-standard receivers, TABRIZ JOURNAL OF ELECTRICAL ENGINEERING, 51(1) (2021) 11-17.
[8] Y. Yu, K. Kang, Y. Fan, C. Zhao, H. Liu, Y. Wu, Y.-L. Ban, W.-Y. Yin, Analysis and design of inductorless wideband low-noise amplifier with noise cancellation technique, IEEE Access, 5 (2017) 9389-9397.
[9] F.S. Bidabadi, S.V. Mir-Moghtadaei, An ultra-wideband 0.1–6.1 GHz low noise amplifier in 180 nm CMOS technology, Journal of Circuits, Systems and Computers, 30(06) (2021) 2150104.
[10] J. Chen, B. Guo, B. Zhang, G. Wen, An inductorless wideband common-gate LNA with dual capacitor cross-coupled feedback and negative impedance techniques, Integration, 56 (2017) 53-60.
[11] W. Xiao, Y. Qiao, X. Liu, X. Chen, C. Huang, D. Guo, A wideband inductorless LNA exploiting three-stage feedback and thermal noise canceling, Microelectronics Journal, 149 (2024) 106237.
[12] L. Ma, Z.-G. Wang, J. Xu, N.M. Amin, A high-linearity wideband common-gate LNA with a differential active inductor, IEEE Transactions on Circuits and Systems II: Express Briefs, 64(4) (2016) 402-406.
[13] E. Cambero, C. Capovilla, I.R.S. Casella, R. Munoz, H. Araujo, A CMOS LNA partially degenerated topology proposal using active inductors, Journal of Circuits, Systems and Computers, 26(05) (2017) 1750078.
[14] T. Inoue, R. Noguchi, A. Tsuchiya, K. Kishine, H. Onodera, Low-Power and High-Linearity Inductorless Low-Noise Amplifiers with Active-Shunt-Feedback in 65-nm CMOS Technology, in: 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), IEEE, 2018, pp. 751-754.
[15] F. Bruccoleri, E.A. Klumperink, B. Nauta, Noise cancelling in wideband CMOS LNAs, in: 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No. 02CH37315), IEEE, 2002, pp. 406-407.
[16] G. Guitton, M. de Souza, A. Mariano, T. Taris, Design methodology based on the inversion coefficient and its application to inductorless LNA implementations, IEEE Transactions on Circuits and Systems I: Regular Papers, 66(10) (2019) 3653-3663.
[17] A.H. Mahmoud, A.H. Ismail, An Inductor-less Current-Reuse CS LNA with Resistive-Feedback for Low-Noise Applications, in: 2023 International Microwave and Antenna Symposium (IMAS), IEEE, 2023, pp. 127-130.
[18] R. Zhou, S. Liu, J. Liu, Y. Liang, Z. Zhu, A 0.1–3.5-GHz inductorless noise-canceling CMOS LNA with IIP3 optimization technique, IEEE Transactions on Microwave Theory and Techniques, 70(6) (2022) 3234-3243.
[19] J. Jang, H. Kim, G. Lee, T.W. Kim, Two-stage compact wideband flat gain low-noise amplifier using high-frequency feedforward active inductor, IEEE Transactions on Microwave Theory and Techniques, 67(12) (2019) 4803-4811.