[1] P. Jarosik, Z. Klimonda, M. Lewandowski, M. Byra, Breast lesion classification based on ultrasonic radio-frequency signals using convolutional neural networks, Biocybernetics and Biomedical Engineering, 40(3) (2020) 977-986.
[2] M. Arnold, E. Morgan, H. Rumgay, A. Mafra, D. Singh, M. Laversanne, J. Vignat, J.R. Gralow, F. Cardoso, S. Siesling, I. Soerjomataram, Current and future burden of breast cancer: Global statistics for 2020 and 2040, The Breast, 66 (2022) 15-23.
[3] G.C. Observatory, Population Fact Sheets of Iran 2020, in: Population Fact Sheets, International Agency for Research on Cancer, France 2021, pp. 1-2.
[4] M.L. Brown, F. Houn, E.A. Sickles, L.G. Kessler, Screening mammography in community practice: Positive predictive value of abnormal findings and yield of follow-up diagnostic procedures, AJR Am. J. Roentgenol., 165(6) (1995) 1373-1377.
[5] S.P. Poplack, A.N. Tosteson, M.R. Grove, W.A. Wells, P.A. Carney, Mammography in 53,803 women from the New Hampshire mammography network, Radiology, 217(3) (2000) 832-840.
[6] S.P. Poplack, P.A. Carney, J.E. Weiss, L. Titus-Ernstoff, M.E. Goodrich, A.N. Tosteson, Screening mammography: Costs and use of screening-related services, Radiology, 234(1) (2005) 79-85.
[7] J. Haas, C. Kaplan, A. McMillan, L.J. Esserman, Does timely assessment affect the anxiety associated with an abnormal mammogram result?, J. Womens Health Gend. Based Med., 10(6) (2001) 599-605.
[8] N.M. Lindberg, D. Wellisch, Anxiety and compliance among women at high risk for breast cancer, Ann. Behav. Med., 23(4) (2001) 298-303.
[9] R.C. Burack, M.S. Simon, M. Stano, J. George, J. Coombs, Follow-up among women with an abnormal mammogram in an HMO: is it complete, timely, and efficient?, Am. J. Manag. Care, 6(10) (2000) 1102-1113.
[10] K. Drukker, M.L. Giger, K. Horsch, M.A. Kupinski, C.J. Vyborny, E.B. Mendelson, Computerized lesion detection on breast ultrasound, Med. Phys., 29(7) (2002) 1438-1446.
[11] H. Yu-Len, C. Dar-Ren, L. Ya-Kuang, Breast cancer diagnosis using image retrieval for different ultrasonic systems, in: 2004 International Conference on Image Processing, 2004. ICIP '04., 2004, pp. 2957-2960 Vol. 2955.
[12] B.O. Anderson, R. Shyyan, A. Eniu, R.A. Smith, C.H. Yip, N.S. Bese, L.W. Chow, S. Masood, S.D. Ramsey, R.W. Carlson, Breast cancer in limited-resource countries: An overview of the Breast Health Global Initiative 2005 guidelines, The breast journal, 12 (2006) S3-15.
[13] M. Costantini, P. Belli, R. Lombardi, G. Franceschini, A. Mulè, L. Bonomo, Characterization of solid breast masses: Use of the sonographic breast imaging reporting and data system lexicon, J. Ultrasound Med., 25(5) (2006) 649-659;.
[14] C.M. Chen, Y.H. Chou, K.C. Han, G.S. Hung, C.M. Tiu, H.J. Chiou, S.Y. Chiou, Breast lesions on sonograms: Computer-aided diagnosis with nearly setting-independent features and artificial neural networks, Radiology, 226(2) (2003) 504-514.
[15] B. Sahiner, H.P. Chan, M.A. Roubidoux, L.M. Hadjiiski, M.A. Helvie, C. Paramagul, J. Bailey, A.V. Nees, C. Blane, Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy, Radiology, 242(3) (2007) 716-724.
[16] K. Wei, B. Wang, J. Saniie, Faster region convolutional neural networks applied to ultrasonic images for breast lesion detection and classification, in: 2020 IEEE International Conference on Electro Information Technology (EIT), IEEE, Chicago, IL, USA, 2020, pp. 171-174.
[17] B. Behboodi, H. Rasaee, A. Tehrani, H. Rivaz, Deep classification of breast cancer in ultrasound images: more classes, better results with multi-task learning, in: 2021 Ultrasonic Imaging and Tomography Conference, 2021.
[18] M. Qiao, Z. Fang, Y. Guo, S. Zhou, C. Chang, Y. Wang, Breast calcification detection based on multichannel radiofrequency signals via a unified deep learning framework, Expert Systems with Applications, 168(114218) (2021) 1-11.
[19] S. Kim, J. Park, J. Yi, H. Kim, End-to-end convolutional neural network framework for breast ultrasound analysis using multiple parametric images generated from radiofrequency signals, Applied Sciences, 12(10) (2022) 1-17.
[20] M. Byra, P. Jarosik, K. Dobruch-Sobczak, Z. Klimonda, H. Piotrzkowska-Wroblewska, J. Litniewski, A. Nowicki, Joint segmentation and classification of breast masses based on ultrasound radio-frequency data and convolutional neural networks, Ultrasonics, 121(6) (2022) 1-9.
[21] X. Li, Y. Sang, X. Ma, Y. Cai, Quantitative feature classification for breast ultrasound images using improved naive bayes, IET Image Processing, 17(5) (2023) 1417-1426.
[22] G.R. Gare, J. Li, R. Joshi, R. Magar, M.P. Vaze, M. Yousefpour, R.L. Rodriguez, J.M. Galeotti, W-Net: Dense and diagnostic semantic segmentation of subcutaneous and breast tissue in ultrasound images by incorporating ultrasound RF waveform data, Med. Image Anal., 76 (2022) 1-14.
[23] H. Taleghamar, S.A. Jalalifar, G.J. Czarnota, A. Sadeghi-Naini, Deep learning of quantitative ultrasound multi-parametric images at pre-treatment to predict breast cancer response to chemotherapy, Sci. Rep., 12(1) (2022) 1-13.
[24] L.M. AbouEl-Magd, A. Darwish, V. Snasel, A.E. Hassanien, A pre-trained convolutional neural network with optimized capsule networks for chest X-rays COVID-19 diagnosis, Cluster Computing, 26(2) (2023) 1389-1403.
[25] S. Tiwari, A. Jain, Convolutional capsule network for COVID-19 detection using radiography images, International journal of imaging systems and technology, 31(2) (2021) 525-539.
[26] A.R. Bushara, R.S. Vinod Kumar, S.S. Kumar, An ensemble method for the detection and classification of lung cancer using Computed Tomography images utilizing a capsule network with Visual Geometry Group, Biomedical signal processing and control, 85 (2023) 104930.
[27] M. Kwabena Patrick, A. Felix Adekoya, A. Abra Mighty, B.Y. Edward, Capsule networks – A survey, Journal of King Saud University - Computer and Information Sciences, 34(1) (2022) 1295-1310.
[28] M.U. Haq, M.A. Sethi, A.U. Rehman, Capsule Network with Its Limitation, Modification, and Applications—A Survey, in: Machine Learning and Knowledge Extraction, 2023, pp. 891-921.
[29] G.E. Hinton, S. Sabour, N. Frosst, Matrix capsules with EM routing, in: International Conference on Learning Representations (ICLR18), 2018, pp. 1-15.
[30] Y. Wang, D. Ning, S. Feng, A Novel Capsule Network Based on Wide Convolution and Multi-Scale Convolution for Fault Diagnosis, in: Appl. Sci., 2020, pp. 1-16.
[31] C.E. Rasmussen;, C. Williams;, Gaussian processes for machine learning, MIT Press, 2006.
[32] I. Guyon, A. Statnikov, B.B. Batu, Automated machine learning: Methods, systems, challenges, Springer, 2019.
[33] D.R. Jones, M. Schonlau, W.J. Welch, Efficient Global Optimization of Expensive Black-Box Functions, Journal of Global Optimization, 13(4) (1998) 455-492.
[34] N. Chawla, K. Bowyer, L. Hall, W. Kegelmeyer, SMOTE: Synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, 16 (2002) 321-357.
[35] D. Elreedy, A.F. Atiya, A comprehensive analysis of synthetic minority oversampling technique (SMOTE) for handling class imbalance, Journal of information science, 505 (2019) 32-64.
[36] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86(11) (1998) 2278-2324.
[37] A. Kaya, A.S. Keceli, C. Catal, H.Y. Yalic, H. Temucin, B. Tekinerdogan, Analysis of transfer learning for deep neural network based plant classification models, Computers and Electronics in Agriculture, 158 (2019) 20-29.
[38] Sara Sabour, Nicholas Frosst, G.E. Hinton, Dynamic routing between capsules, Adv. Neural Inf. Process. Syst., (2017).
[39] G.E. Hinton, A. Krizhevsky, S.D. Wang, Transforming auto-encoders, in: T. Honkela, W. Duch, M. Girolami, S. Kaski (Eds.) Artificial Neural Networks and Machine Learning – ICANN 2011, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 44-51.