[1] S. Sunkari, A. Sangam, M. Suchetha, R. Raman, R. Rajalakshmi, S. Tamilselvi, A refined ResNet18 architecture with Swish activation function for Diabetic Retinopathy classification, Biomedical Signal Processing and Control, 88 (2024) 105630.
[2] A. Biran, Automatic detection and classification of diabetic retinopathy from retinal fundus images, Toronto Metropolitan University.
[3] K. Shankar, A.R.W. Sait, D. Gupta, S.K. Lakshmanaprabu, A. Khanna, H.M. Pandey, Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model, Pattern Recognition Letters, 133 (2020) 210-216.
[4] M. Canayaz, Classification of diabetic retinopathy with feature selection over deep features using nature-inspired wrapper methods, Applied Soft Computing, 128 (2022) 109462.
[5] V.P.C. Reddy, K.K. Gurrala, OHGCNet: optimal feature selection-based hybrid graph convolutional network model for joint DR-DME classification, Biomedical Signal Processing and Control, 78 (2022) 103952.
[6] S.Z. Beevi, Multi-Level severity classification for diabetic retinopathy based on hybrid optimization enabled deep learning, Biomedical Signal Processing and Control, 84 (2023) 104736.
[7] R.C. Joshi, A.K. Sharma, M.K. Dutta, VisionDeep-AI: Deep learning-based retinal blood vessels segmentation and multi-class classification framework for eye diagnosis, Biomedical Signal Processing and Control, 94 (2024) 106273.
[8] G.T. Zago, R.V. Andreão, B. Dorizzi, E.O.T. Salles, Diabetic retinopathy detection using red lesion localization and convolutional neural networks, Computers in biology and medicine, 116 (2020) 103537.
[9] F.J.M. Shamrat, R. Shakil, B. Akter, M.Z. Ahmed, K. Ahmed, F.M. Bui, M.A. Moni, An advanced deep neural network for fundus image analysis and enhancing diabetic retinopathy detection, Healthcare Analytics, 5 (2024) 100303.
[10] M. Phridviraj, R. Bhukya, S. Madugula, A. Manjula, S. Vodithala, M.S. Waseem, A bi-directional Long Short-Term Memory-based Diabetic Retinopathy detection model using retinal fundus images, Healthcare Analytics, 3 (2023) 100174.
[11] D.A. Da Rocha, F.M.F. Ferreira, Z.M.A. Peixoto, Diabetic retinopathy classification using VGG16 neural network, Research on Biomedical Engineering, 38(2) (2022) 761-772.
[12] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, L. Shao, Pyramid vision transformer: A versatile backbone for dense prediction without convolutions, in: Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 568-578.
[13] M. Karthik, S. Dane, Aptos 2019 blindness detection, Kaggle
https://kaggle. com/competitions/aptos2019-blindness-detection Go to reference in, (2019) 5.
[14] M. Xu, S. Yoon, A. Fuentes, D.S. Park, A comprehensive survey of image augmentation techniques for deep learning, Pattern Recognition, 137 (2023) 109347.
[15] S. Wu, P. Flach, A scored AUC metric for classifier evaluation and selection, in: Second workshop on ROC analysis in ML, bonn, Germany, Citeseer, 2005.
[16] A. Gunawardana, G. Shani, A survey of accuracy evaluation metrics of recommendation tasks, Journal of Machine Learning Research, 10(12) (2009).
[17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929, (2020).