A Comprehensive Approach to Synthetic Distribution Grid Generation: Erdős–Rényi to Barabási-Albert

Document Type : Research Article

Author

Department of Electrical Engineering, Golestan University, Gorgan, Iran

Abstract

In this extended study, the focus is on advancing the generation of synthetic distribution grids (SDGs) through the introduction of a new algorithm based on the Barabási-Albert random graph model. The initial use of the Erdős model to create SDGs revealed limitations in size and structural adjustability beyond the number of vertices. To address these limitations and push the research forward, the new algorithm utilizes the Barabási-Albert model to provide more control over the structural features of the generated graphs through the introduction of a novel tuning parameter known as the “richness index”. The effectiveness of both algorithms in producing SDGs of various sizes is demonstrated by generating SDGs with different sizes, confirming their ability to mimic synthetic radial distribution grids successfully. Additionally, a detailed examination of degree-based parameters and Pearson coefficients for SDGs of sizes from 20 to 1000 uncovers significant patterns. Furthermore, the proposed algorithm is examined in the terms of the variation of richness index in branching rate and μ-PMU placement, confirming the scale-free characteristic of the method. A comparison of the Erdős and Barabási-Albert models shows variations in maximum degree values, branching rates, and mixing patterns. The original Barabási-Albert model tends to have nodes with higher degrees and increased branching rates, which can be adjusted by the richness index. These findings emphasize the ability of the Barabási-Albert model to generate scale-free SDGs with diverse structures by fine-tuning the richness index.

Keywords

Main Subjects


[1] G. Kalt, P. Thunshirn, H. Haberl, A global inventory of electricity infrastructures from 1980 to 2017: Country-level data on power plants, grids, and transformers, Data in Brief, 38 (2021) 107351.
[2] M. Shahraeini, S. Alishahi, A survey on information and communication technology (ICT) applications in distribution systems, in:  21st International Conference and Exhibition on Electricity Distribution, 2011.
[3] M. Shahraeini, Z. Farmani, Designing of Communication Systems in Advanced Metering Infrastructure (AMI) using Wi-Fi Offloading Technology, in:  2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), IEEE, 2019.
[4] G.A. Pagani, M. Aiello, The Power Grid as a complex network: A survey, Physica A: Statistical Mechanics and its Applications, 392(11) (2013) 2688-2700.
[5] R. Espejo, S. Lumbreras, A. Ramos, A Complex-Network Approach to the Generation of Synthetic Power Transmission Networks, IEEE Systems Journal, 13(3) (2019) 3050-3058.
[6] H. Labrini, Graph-based model for distribution systems: Application to planning problem, University of Waterloo, 2015.
[7] H. Willis, Power distribution planning reference book, New York: M, in, Dekker, 2004.
[8] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, Critical points and transitions in an electric power transmission model for cascading failure blackouts, Chaos: An interdisciplinary journal of nonlinear science, 12(4) (2002) 985-994.
[9] M. Parashar, J.S. Thorp, C.E. Seyler, Continuum modeling of electromechanical dynamics in large-scale power systems, IEEE Transactions on Circuits and Systems I: Regular Papers, 51(9) (2004) 1848-1858.
[10] Z. Wang, A. Scaglione, R.J. Thomas, Generating statistically correct random topologies for testing smart grid communication and control networks, IEEE transactions on Smart Grid, 1(1) (2010) 28-39.
[11] S. Pahwa, C. Scoglio, A. Scala, Abruptness of Cascade Failures in Power Grids, Scientific Reports, 4(1) (2014) 3694.
[12] J. Hu, L. Sankar, D.J. Mir, Cluster-and-connect: An algorithmic approach to generating synthetic electric power network graphs, in:  2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), IEEE, 2015, pp. 223-230.
[13] S.H. Elyas, Z. Wang, Improved synthetic power grid modeling with correlated bus type assignments, IEEE Transactions on Power Systems, 32(5) (2016) 3391-3402.
[14] K.M. Gegner, A.B. Birchfield, T. Xu, K.S. Shetye, T.J. Overbye, A methodology for the creation of geographically realistic synthetic power flow models, in:  2016 IEEE Power and Energy Conference at Illinois (PECI), IEEE, 2016, pp. 1-6.
[15] S. Ma, Y. Yu, L. Zhao, Dual-stage constructed random graph algorithm to generate random graphs featuring the same topological characteristics with power grids, Journal of Modern Power Systems and Clean Energy, 5(5) (2017) 683-695.
[16] A.B. Birchfield, T. Xu, T.J. Overbye, Power flow convergence and reactive power planning in the creation of large synthetic grids, IEEE Transactions on Power Systems, 33(6) (2018) 6667-6674.
[17] E. Schweitzer, A. Scaglione, A mathematical programming solution for automatic generation of synthetic power flow cases, IEEE Transactions on Power Systems, 34(1) (2018) 729-741.
[18] S. Soltan, A. Loh, G. Zussman, A learning-based method for generating synthetic power grids, IEEE Systems Journal, 13(1) (2018) 625-634.
[19] T. Xu, A.B. Birchfield, T.J. Overbye, Modeling, tuning, and validating system dynamics in synthetic electric grids, IEEE Transactions on Power Systems, 33(6) (2018) 6501-6509.
[20] S.G. Aksoy, E. Purvine, E. Cotilla-Sanchez, M. Halappanavar, A generative graph model for electrical infrastructure networks, Journal of complex networks, 7(1) (2019) 128-162.
[21] M. Shahraeini, A. Alvandi, S. Khormali, Behavior analysis of random power graphs for optimal PMU placement in smart grids, in:  2020 10th International Conference on Computer and Knowledge Engineering (ICCKE), IEEE, 2020, pp. 107-112.
[22] M. Shahraeini, Modified Erdős–Rényi Random Graph Model for Generating Synthetic Power Grids, IEEE Systems Journal,  (2023).
[23] V.K. Krishnan, B.S. Palmintier, B.S. Hodge, E.T. Hale, T. Elgindy, B. Bugbee, M.N. Rossol, A.J. Lopez, D. Krishnamurthy, C. Vergara, Smart-ds: Synthetic models for advanced, realistic testing: Distribution systems and scenarios, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2017.
[24] E. Schweitzer, A. Scaglione, A. Monti, G.A. Pagani, Automated generation algorithm for synthetic medium voltage radial distribution systems, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 7(2) (2017) 271-284.
[25] A. Trpovski, D. Recalde, T. Hamacher, Synthetic distribution grid generation using power system planning: Case study of singapore, in:  2018 53rd International Universities Power Engineering Conference (UPEC), IEEE, 2018, pp. 1-6.
[26] C. Mateo, F. Postigo, F. de Cuadra, T.G. San Roman, T. Elgindy, P. Duenas, B.-M. Hodge, V. Krishnan, B. Palmintier, Building large-scale US synthetic electric distribution system models, IEEE Transactions on Smart Grid, 11(6) (2020) 5301-5313.
[27] R. Yan, Y. Yuan, Z. Wang, G. Geng, Q. Jiang, Active distribution system synthesis via unbalanced graph generative adversarial network, IEEE Transactions on Power Systems, 38(5) (2022) 4293-4307.
[28] M. Shahraeini, An Algorithm for Generating Synthetic Distribution Grids based on Edrös-Rényi Random Graph Model, in:  2023 13th Smart Grid Conference (SGC), IEEE, 2023, pp. 1-8.
[29] S. Abeysinghe, J. Wu, M. Sooriyabandara, M. Abeysekera, T. Xu, C. Wang, Topological properties of medium voltage electricity distribution networks, Applied Energy, 210 (2018) 1101-1112.
[30] V. Krishnan, B. Bugbee, T. Elgindy, C. Mateo, P. Duenas, F. Postigo, J.-S. Lacroix, T.G. San Roman, B. Palmintier, Validation of synthetic US electric power distribution system data sets, IEEE Transactions on Smart Grid, 11(5) (2020) 4477-4489.
[31] M. Ali, K. Prakash, C. Macana, M. Raza, A.K. Bashir, H. Pota, Modeling synthetic power distribution network and datasets with industrial validation, Journal of Industrial Information Integration, 31 (2023) 100407.
[32] B. Bollobás, Random Graphs, Cambridge University Press, Cambridge, UK,  (2001).
[33] P. Erdos, A. Renyi, On Random Graphs. Publicationes Mathematicae (Debrecen), Vol. 6,  (1959).
[34] E.N. Gilbert, Random graphs, The Annals of Mathematical Statistics, 30(4) (1959) 1141-1144.
[35] D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’networks, nature, 393(6684) (1998) 440-442.
[36] X. Hu, Z.-L. Zhang, Towards a graph signal processing framework for modeling power system dynamics, in:  2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), IEEE, 2019, pp. 1-5.
[37] C.M. Domingo, T.G. San Roman, A. Sanchez-Miralles, J.P.P. Gonzalez, A.C. Martinez, A reference network model for large-scale distribution planning with automatic street map generation, IEEE Transactions on Power Systems, 26(1) (2010) 190-197.
[38] T. Gómez, C. Mateo, Á. Sánchez, P. Frías, R. Cossent, Reference network models: A computational tool for planning and designing large-scale smart electricity distribution grids, High performance computing in power and energy systems,  (2013) 247-279.
[39] E. Schweitzer, K. Togawa, T. Schloesser, A. Monti, A Matlab GUI for the generation of distribution grid models, in:  International ETG Congress 2015; Die Energiewende-Blueprints for the new energy age, VDE, 2015, pp. 1-6.
[40] A. Bidel, T. Schelo, T. Hamacher, Synthetic distribution grid generation based on high resolution spatial data, in:  2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), IEEE, 2021, pp. 1-6.
[41] R. Meyur, A. Vullikanti, S. Swarup, H.S. Mortveit, V. Centeno, A. Phadke, H.V. Poor, M.V. Marathe, Ensembles of realistic power distribution networks, Proceedings of the National Academy of Sciences, 119(42) (2022) e2205772119.
[42] M.H. Mohammadi, K. Saleh, Synthetic benchmarks for power systems, IEEE Access, 9 (2021) 162706-162730.
[43] F.B. Dos Reis, R. Tonkoski, B.P. Bhattarai, T.M. Hansen, A real-world test distribution system with appliance-level load data for demand response and transactive energy studies, IEEE Access, 9 (2021) 149506-149519.
[44] L. Wang, J. Halvorsen, S. Pannala, A. Srivastava, A.H. Gebremedhin, N.N. Schulz, CP‐SyNet: A tool for generating customised cyber‐power synthetic network for distribution systems with distributed energy resources, IET Smart Grid, 5(6) (2022) 463-477.
[45] R.M. Hoff, M.V. Chester, Preparing infrastructure for surprise: fusing synthetic network, interdependency, and cascading failure models, Environmental Research: Infrastructure and Sustainability, 3(2) (2023) 025009.
[46] A. Trpovski, Synthetic Power Grid Development: Optimal Power System Planning-based Approach and Its Application for Singapore Case Study, Technische Universität München, 2023.
[47] R. Meyur, K. Lyman, B. Krishnamoorthy, M. Halappanavar, Structural Validation of Synthetic Power Distribution Networks Using the Multiscale Flat Norm, in:  International Conference on Computational Science, Springer, 2023, pp. 55-69.
[48] R. Solomonoff, A. Rapoport, Connectivity of random nets, The bulletin of mathematical biophysics, 13 (1951) 107-117.
[49] P. Erdos, A. Rényi, On the evolution of random graphs, Publ. math. inst. hung. acad. sci, 5(1) (1960) 17-60.
[50] P. Erdos, On the evolution of random graphs, Bulletin of the Institute of International Statistics, 38 (1961) 343-347.
[51] P. Erdős, A. Rényi, On the strength of connectedness of a random graph, Acta Mathematica Hungarica, 12(1) (1961) 261-267.
[52] P. Erdős, A. Rényi, Asymmetric graphs, Acta Mathematica Academiae Scientiarum Hungarica, 14(3) (1963) 295-315.
[53] P. Erdős, A. Rényi, On the existence of a factor of degree one of a connected random graph, Acta Math. Acad. Sci. Hungar, 17(359-368) (1966) 192.
[54] P. Erdos, &A. Renyi-On random matrices, II, Studia Sci. Math. Hungar,  (1968) 3,459-464.
[55] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, science, 286(5439) (1999) 509-512.
[56] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener, Graph structure in the web, Computer networks, 33(1-6) (2000) 309-320.
[57] A.-L. Barabási, Z.N. Oltvai, S. Wuchty, Characteristics of biological networks, Complex networks,  (2004) 443-457.
[58] K. Hassini, A. Fakhfakh, F. Derbel, Optimal Placement of μ PMUs in Distribution Networks with Adaptive Topology Changes, Energies, 16(20) (2023) 7047.