[1] M. Veldhorst, H. Eenink, C.-H. Yang, and A. S. Dzurak, "Silicon CMOS architecture for a spin-based quantum computer," Nature communications, vol. 8, no. 1, p. 1766, 2017.
[2] C. H. Yang et al., "Operation of a silicon quantum processor unit cell above one kelvin," Nature, vol. 580, no. 7803, pp. 350-354, 2020.
[3] A. Rassekh, M. Shalchian, J.-M. Sallese, and F. Jazaeri, "Design space of quantum dot spin qubits," Physica B: Condensed Matter, vol. 666, p. 415133, 2023.
[4] B. E. Kane, "A silicon-based nuclear spin quantum computer," nature, vol. 393, no. 6681, pp. 133-137, 1998.
[5] D. Loss and D. P. DiVincenzo, "Quantum computation with quantum dots," Physical Review A, vol. 57, no. 1, p. 120, 1998.
[6] H. Kiyama et al., "Single-electron charge sensing in self-assembled quantum dots," Scientific reports, vol. 8, no. 1, p. 13188, 2018.
[7] S. Gustavsson et al., "Counting statistics of single electron transport in a quantum dot," Physical review letters, vol. 96, no. 7, p. 076605, 2006.
[8] Y. Yin, "Emission rate of electron transport through a quantum point contact," Journal of Physics: Condensed Matter, vol. 35, no. 35, p. 355301, 2023.
[9] P. Lafarge, H. Pothier, E. R. Williams, D. Esteve, C. Urbina, and M. H. Devoret, "Direct observation of macroscopic charge quantization," Zeitschrift für Physik B Condensed Matter, vol. 85, pp. 327-332, 1991.
[10] L. Molenkamp, K. Flensberg, and M. Kemerink, "Scaling of the Coulomb energy due to quantum fluctuations in the charge on a quantum dot," Physical review letters, vol. 75, no. 23, p. 4282, 1995.
[11] T. Buehler et al., "Single-shot readout with the radio-frequency single-electron transistor in the presence of charge noise," Applied Physics Letters, vol. 86, no. 14, 2005.
[12] T. Fujisawa, T. Hayashi, Y. Hirayama, H. Cheong, and Y. Jeong, "Electron counting of single-electron tunneling current," Applied physics letters, vol. 84, no. 13, pp. 2343-2345, 2004.
[13] W. Lu, Z. Ji, L. Pfeiffer, K. West, and A. Rimberg, "Real-time detection of electron tunnelling in a quantum dot," Nature, vol. 423, no. 6938, pp. 422-425, 2003.
[14] R. Schoelkopf, P. Wahlgren, A. Kozhevnikov, P. Delsing, and D. Prober, "The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer," science, vol. 280, no. 5367, pp. 1238-1242, 1998.
[15] A. S. de Almeida et al., "Ambipolar charge sensing of few-charge quantum dots," Physical Review B, vol. 101, no. 20, p. 201301, 2020.
[16] D. Bozyigit, S. Volk, O. Yarema, and V. Wood, "Quantification of deep traps in nanocrystal solids, their electronic properties, and their influence on device behavior," Nano letters, vol. 13, no. 11, pp. 5284-5288, 2013.
[17] A. A. Cordones and S. R. Leone, "Mechanisms for charge trapping in single semiconductor nanocrystals probed by fluorescence blinking," Chemical Society Reviews, vol. 42, no. 8, pp. 3209-3221, 2013.
[18] A. H. Ip et al., "Hybrid passivated colloidal quantum dot solids," Nature nanotechnology, vol. 7, no. 9, pp. 577-582, 2012.
[19] S. C. Boehme et al., "Density of trap states and Auger-mediated electron trapping in CdTe quantum-dot solids," Nano Letters, vol. 15, no. 5, pp. 3056-3066, 2015.
[20] M. Hofheinz, X. Jehl, M. Sanquer, G. Molas, M. Vinet, and S. Deleonibus, "Individual charge traps in silicon nanowires: Measurements of location, spin and occupation number by Coulomb blockade spectroscopy," The European Physical Journal B-Condensed Matter and Complex Systems, vol. 54, pp. 299-307, 2006.
[21] S. Datta, Quantum transport: atom to transistor. Cambridge university press, 2005.
[22] A. Rassekh, M. Shalchian, J.-M. Sallese, and F. Jazaeri, "Tunneling Current Through a Double Quantum Dots System," Ieee Access, vol. 10, pp. 75245-75256, 2022.
[23] R. A. Bush, E. D. Ochoa, and J. K. Perron, "Transport through quantum dots: An introduction via master equation simulations," American Journal of Physics, vol. 89, no. 3, pp. 300-306, 2021.
[24] M. Hofheinz, "Coulomb blockade in silicon nanowire MOSFETs," Université Joseph-Fourier-Grenoble I, 2006.