Recent Advances in Fault Diagnosis Methods for Electrical Motors- A Comprehensive Review with Emphasis on Deep Learning

Document Type : Review Article


School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran


This paper provides a review of deep learning-based methods for fault diagnosis of electrical motors. Electrical motors are crucial components in various industrial applications, and their efficient operation is essential for maintaining productivity and minimizing downtime. Traditional fault diagnosis methods have limitations in accurately detecting and classifying motor faults. Deep learning, a subset of machine learning, has emerged as a promising approach for improving fault diagnosis accuracy. This review discusses various deep learning methods, such as convolutional neural networks, recurrent neural networks, autoencoders, transfer learning, and transformers that have been utilized for motor fault diagnosis. Additionally, it examines different datasets and features used in these methods, highlighting their advantages and limitations. The paper also discusses challenges and future research directions in this field, such as data augmentation, transfer learning, and interpretability of deep learning models. Based on the findings, it is concluded that deep learning-based technologies are replacing manual expert involvement as the new norms in this field. Besides, methods are getting more standard, and official benchmarks are being created. A summarized table is provided at the end of the paper and numerous methods have been reported.


Main Subjects

[1]      Y. Lecun and P. Haffner, “Object recognition with gradient-based learning,” Shape, Contour Group. Comput. Vis., vol. 1681, pp. 319–345, 1999.
[2]      R. Bolbolnia and K. Abbaszadeh, “Fault diagnosis and fault-tolerant SVPWM technique of six-phase converter under open-switch fault,” J. Iran. Assoc. Electr. Electron. Eng., vol. 19, no. 4, pp. 93–104, 2022, doi: 10.52547/jiaeee.19.4.93.
[3]      M. Cheng, J. Hang, and J. Zhang, “Overview of fault diagnosis theory and method for permanent magnet machine,” Chinese J. Electr. Eng., vol. 1, no. 1, pp. 21–36, 2019, doi: 10.23919/cjee.2015.7933135.
[4]      B. M. Ebrahimi and J. Faiz, “Feature extraction for short-circuit fault detection in permanent-magnet synchronous motors using stator-current monitoring,” IEEE Trans. Power Electron., vol. 25, no. 10, pp. 2673–2682, 2010, doi: 10.1109/TPEL.2010.2050496.
[5]      A. Asadnajafi, P. Bagheri, M. Maghfourian, and A. asghar Razi-Kazemi, “Intelligent fault diagnosis of high voltage circuit breaker coils based on multiphysics simulation,” J. Iran. Assoc. Electr. Electron. Eng., vol. 20, no. 2, pp. 143–158, 2023, doi: 10.52547/jiaeee.20.2.143.
[6]      W. A. Smith and R. B. Randall, “Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study,” Mech. Syst. Signal Process., vol. 64–65, pp. 100–131, 2015, doi: 10.1016/j.ymssp.2015.04.021.
[7]      Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” proc. IEEE, 1998, [Online]. Available: #full-text-section.
[8]      J. Wu, “Introduction to convolutional neural networks,” Introd. to Convolutional Neural Networks, pp. 1–31, 2017, [Online]. Available:
[9]      S. R. K. Hoseini, E. Farjah, T. Ghanbari, and H. Givi, “Extended Kalman filter-based method for inter-turn fault detection of the switched reluctance motors,” IET Electr. Power Appl., vol. 10, no. 8, pp. 714–722, 2016, doi: 10.1049/iet-epa.2015.0602.
[10]    S. T. Lee and J. Hur, “Simplified equivalent model of PMSM with inter-turn fault,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2629–2636, 2019, doi: 10.1109/TIA.2019.2897269.
[11]    R. T. Meyer, R. A. Decarlo, S. C. Johnson, and S. Pekarek, “Short-circuit fault detection observer design in a PMSM,” IEEE Trans. Aerosp. Electron. Syst., vol. 54, no. 6, pp. 3004–3017, 2018, doi: 10.1109/TAES.2018.2836618.
[12]    Y. Zhang, G. Liu, W. Zhao, H. Zhou, Q. Chen, and M. Wei, “On-line diagnosis of slight interturn short-circuit fault for a low-speed permanent magnet synchronous motor,” IEEE Trans. Transp. Electrif., vol. 7782, no. c, 2020, doi: 10.1109/TTE.2020.2991271.
[13]    A. Jafari, J. Faiz, and M. A. Jarrahi, “A simple and efficient current-based method for interturn fault detection in BLDC motors,” IEEE Trans. Ind. Informatics, vol. 17, no. 4, pp. 2707–2715, 2021, doi: 10.1109/TII.2020.3009867.
[14]    B. G. Gu, “Offline interturn fault diagnosis method for induction motors by impedance analysis,” IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5913–5920, 2018, doi: 10.1109/TIE.2017.2782200.
[15]    R. Cui, Y. Fan, and C. Li, “On-line inter-turn short-circuit fault diagnosis and torque ripple minimization control strategy based on OW five-phase BFTHE-IPM,” IEEE Trans. Energy Convers., vol. 33, no. 4, pp. 2200–2209, 2018, doi: 10.1109/TEC.2018.2851615.
[16]    D. S. B. Fonseca, C. M. C. Santos, and A. J. M. Cardoso, “Stator faults modeling and diagnostics of line-start permanent magnet synchronous motors,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 2590–2599, 2020, doi: 10.1109/TIA.2020.2979674.
[17]    E. Mazaheri-Tehrani and J. Faiz, “Airgap and stray magnetic flux monitoring techniques for fault diagnosis of electrical machines: An overview,” IET Electr. Power Appl., vol. 16, no. 3, pp. 277–299, 2022, doi: 10.1049/elp2.12157.
[18]    Y. Park, H. Choi, S. Bin Lee, and K. N. Gyftakis, “Search coil-based detection of nonadjacent rotor bar damage in Squirrel cage induction motors,” IEEE Trans. Ind. Appl., vol. 56, no. 5, pp. 4748–4757, 2020, doi: 10.1109/TIA.2020.3000461.
[19]    K. N. Gyftakis and A. J. M. Cardoso, “Reliable detection of stator interturn faults of very low severity level in induction motors,” IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3475–3484, 2021, doi: 10.1109/TIE.2020.2978710.
[20]    B. Akhil Vinayak, K. Anjali Anand, and G. Jagadanand, “Wavelet-based real-time stator fault detection of inverter-fed induction motor,” IET Electr. Power Appl., vol. 14, no. 1, pp. 82–90, 2020, doi: 10.1049/iet-epa.2019.0273.
[21]    M. Singh and A. G. Shaik, “Incipient fault detection in stator windings of an induction motor using Stockwell transform and SVM,” IEEE Trans. Instrum. Meas., vol. 69, no. 12, pp. 9496–9504, 2020, doi: 10.1109/TIM.2020.3002444.
[22]    G. H. Bazan, P. R. Scalassara, W. Endo, A. Goedtel, R. H. C. Palacios, and W. F. Godoy, “Stator short-circuit diagnosis in induction motors using mutual information and intelligent systems,” IEEE Trans. Ind. Electron., vol. 66, no. 4, pp. 3237–3246, 2019, doi: 10.1109/TIE.2018.2840983.
[23]    H. Yaghobi, “Application of badial basis neural networks in fault diagnosis of synchronous generator,” J. Iran. Assoc. Electr. Electron. Eng., vol. 10, no. 2, pp. 23–36, Oct. 2013, Accessed: Aug. 16, 2023.
[24]    L. S. Maraaba, A. S. Milhem, I. A. Nemer, H. Al-Duwaish, and M. A. Abido, “Convolutional neural network-based inter-turn fault diagnosis in LSPMSMs,” IEEE Access, vol. 8, pp. 81960–81970, 2020, doi: 10.1109/ACCESS.2020.2991137.
[25]    L. S. Maraaba, Z. M. Al-Hamouz, and M. A. Abido, “An accurate tool for detecting stator inter-turn fault in LSPMSM,” IEEE Access, vol. 7, pp. 88622–88634, 2019, doi: 10.1109/ACCESS.2019.  2923812.
[26]    R. Ghadirinezhd and M. Hoseintabar, “High-resolution rotor fault diagnosis of wound rotor induction machine based on stator current signature analyse,” AUT J. Electr. Eng., 2023, doi: 10. 22060/eej.2023.21583.5483.
[27]    M. Afshar, A. Tabesh, M. Ebrahimi, and S. A. Khajehoddin, “Stator short-circuit fault detection and location methods for brushless DFIMs using nested-loop rotor slot harmonics,” IEEE Trans. Power Electron., vol. 35, no. 8, pp. 8559–8568, 2020, doi: 10.1109/TPEL.2019.2963295.
[28]    J. Hu, L. Wei, J. McGuire, and Z. Liu, “Faulted phase location identification for adjustable speed drives in high-resistance grounding system,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 4457–4463, 2018, doi: 10.1109/TIA.2018.2835415.
[29]    B. Wang, C. Shen, K. Xu, and T. Zheng, “Turn-to-turn short circuit of motor stator fault diagnosis in continuous state based on deep auto-encoder,” IET Electr. Power Appl., vol. 13, no. 10, pp. 1598–1606, 2019, doi: 10.1049/iet-epa.2019.0101.
[30]    J. Zhang, Y. Wang, K. Zhu, Y. Zhang, and Y. jiang Li, “Diagnosis of inter-turn short circuit faults in permanent magnet synchronous motors based on few-shot learning under a federated learning framework,” IEEE Trans. Ind. Informatics, vol. 3203, no. c, pp. 1–9, 2021, doi: 10.1109/TII.2021. 3067915.
[31]    I. Bandyopadhyay, P. Purkait, and C. Koley, “Performance of a classifier based on time-domain features for incipient fault detection in inverter drives,” IEEE Trans. Ind. Informatics, vol. 15, no. 1, pp. 3–14, 2019, doi: 10.1109/TII.2018.2854885.
[32]    Q. Zhang and M. Feng, “Fast fault diagnosis method for Hall sensors in brushless DC motor drives,” IEEE Trans. Power Electron., vol. 34, no. 3, pp. 2585–2596, 2019, doi: 10.1109/TPEL. 2018. 2844956.
[33]    X. Song, J. Zhao, J. Song, F. Dong, L. Xu, and J. Zhao, “Local demagnetization fault recognition of permanent magnet synchronous linear motor based on S-transform and PSO-LSSVM,” IEEE Trans. Power Electron., vol. 35, no. 8, pp. 7816–7825, 2020, doi: 10.1109/TPEL.2020.2967053.
[34]    M. E. Iglesias-Martinez, P. F. De Cordoba, J. A. Antonino-Daviu, and J. Alberto Conejero, “Detection of nonadjacent rotor faults in induction motors via spectral subtraction and autocorrelation of stray flux signals,” IEEE Transactions on Industry Applications, 2019, vol. 55, no. 5, pp. 4585–4594, doi: 10.1109/TIA.2019.2917861.
[35]    C. G. Dias and F. H. Pereira, “Broken rotor bars detection in induction motors running at very low Slip using a Hall effect sensor,” IEEE Sens. J., vol. 18, no. 11, pp. 4602–4613, 2018, doi: 10.1109/ JSEN.2018.2827204.
[36]    L. A. Trujillo-Guajardo, J. Rodriguez-Maldonado, M. A. Moonem, and M. A. Platas-Garza, “A multiresolution Taylor-Kalman approach for broken rotor bar detection in cage induction motors,” IEEE Trans. Instrum. Meas., vol. 67, no. 6, pp. 1317–1328, 2018, doi: 10.1109/ TIM.2018.2795895.
[37]    I. Zamudio-Ramirez et al., “Automatic diagnosis of electromechanical faults in induction motors based on the transient analysis of the stray flux via MUSIC methods,” in IEEE Trans. on Industry Applications, 2020, vol. 56, no. 4, pp. 3604–3613, doi: 10.1109/TIA.2020.2988002.
[38]    W. Zhao and L. Wang, “Multiple-Kernel MRVM with LBFO algorithm for fault diagnosis of broken rotor bar in induction motor,” IEEE Access, vol. 7, pp. 182173–182184, 2019, doi: 10.1109/ ACCESS.2019.2958689.
[39]    G. Cirrincione, R. R. Kumar, A. Mohammadi, S. H. Kia, P. Barbiero, and J. Ferretti, “Shallow versus deep neural networks in gear fault diagnosis,” IEEE Trans. Energy Convers., vol. 35, no. 3, pp. 1338–1347, 2020, doi: 10.1109/TEC.2020.2978155.
[40]    M. Sun, H. Wang, P. Liu, S. Huang, P. Wang, and J. Meng, “Stack autoencoder transfer learning algorithm for bearing fault diagnosis based on class separation and domain fusion,” IEEE Trans. Ind. Electron., vol. 69, no. 3, pp. 3047–3058, 2022, doi: 10.1109/TIE.2021.3066933.
[41]    F. Ding, X. Zhang, W. Wu, and Y. Wang, “A fault feature extraction method of motor bearing using improved LCD,” IEEE Access, pp. 220973–220979, 2020, doi: 10.1109/ACCESS.2020. 3043803.
[42]    F. Ben Abid, S. Zgarni, and A. Braham, “Distinct bearing faults detection in induction motor by a hybrid optimized SWPT and aiNet-DAG SVM,” IEEE Trans. Energy Convers., vol. 33, no. 4, pp. 1692–1699, 2018, doi: 10.1109/TEC.2018.2839083.
[43]    S. Langarica, C. Ruffelmacher, and F. Nunez, “An industrial internet application for real-time fault diagnosis in industrial motors,” IEEE Trans. Autom. Sci. Eng., vol. 17, no. 1, pp. 284–295, 2020, doi: 10.1109/TASE.2019.2913628.
[44]    Y. Hong, M. Kim, H. Lee, J. J. Park, and D. Lee, “Early fault diagnosis and classification of ball bearing using enhanced kurtogram and Gaussian mixture model,” IEEE Trans. Instrum. Meas., vol. 68, no. 12, pp. 4746–4755, 2019, doi: 10.1109/TIM.2019.2898050.
[45]    Y. Zhao, M. Zhou, X. Xu, N. Zhang, and H. Zhang, “Fault diagnosis based on space mapping and deformable convolution networks,” IEEE Access, vol. 8, pp. 212599–212607, 2020, doi: 10.1109/ ACCESS.2020.3040448.
[46]    X. Zhao, M. Jia, P. Ding, C. Yang, D. She, and Z. Liu, “Intelligent fault diagnosis of multi-channel motor-rotor system based on multi-manifold deep extreme learning machine,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 5, pp. 2177–2187, 2020, doi: 10.1109/TMECH.2020.3004589.
[47]    C. T. Alexakos, Y. L. Karnavas, M. Drakaki, and I. A. Tziafettas, “A combined short time Fourier transform and image classification transformer model for rolling element bearings fault diagnosis in electric motors,” Mach. Learn. Knowl. Extr., vol. 3, no. 1, pp. 228–242, 2021, doi: 10.3390/make 3010011.
[48]    A. H. Zim, A. Ashraf, A. Iqbal, A. Malik, and M. Kuribayashi, “A vision transformer-based approach to bearing fault classification via vibration signals,” no. Ml, pp. 1–6, 2022, [Online]. Available:
[49]    J. Faiz, A. M. Takbash, and E. Mazaheri-Tehrani, “A review of application of signal brocessing techniques for fault diagnosis of induction motors – Part I,” AUT J. Electr. Eng., vol. 49, no. 2, pp. 109–122, 2017, doi: 10.22060/eej.2017.13219.5142.
[50]    Z. Yang, J. Cen, X. Liu, J. Xiong, and H. Chen, “Research on bearing fault diagnosis method based on transformer neural network,” Meas. Sci. Technol., vol. 33, no. 8, p. 85111, May 2022, doi: 10. 1088/1361-6501/ac66c4.
[51]    F. Parvin, J. Faiz, Y. Qi, A. Kalhor, and B. Akin, “A comprehensive inter-turn fault severity diagnosis method for permanent magnet synchronous motors based on transformer neural networks,” IEEE Trans. Ind. Informatics, pp. 1–11, 2023, doi: 10.1109/TII.2023.3242773.
[52]    M. Hoseintabar Marzebali, S. Hasani Borzadaran, H. Mashayekhi, and V. Mashayekhi, “Bearing fault detection and classification based on temporal convolutions and LSTM network in induction machine,” AUT J. Electr. Eng., vol. 54, no. 1, pp. 107–120, 2022, doi: 10.22060/eej.2021.20438. 5430.
[53]    T. Lu, F. Yu, B. Han, and J. Wang, “A generic intelligent bearing fault diagnosis system using convolutional neural networks with transfer learning,” IEEE Access, vol. 8, pp. 164807–164814, 2020, doi: 10.1109/access.2020.3022840.
[54]    X. Wang, S. Lu, W. Huang, Q. Wanga, S. Zhang, and M. Xia, “Efficient data reduction at the edge of industrial internet of things for PMSM bearing fault diagnosis,” IEEE Trans. Instrum. Meas., vol. 70, 2021, doi: 10.1109/TIM.2021.3051668.
[55]    H. Tang, S. Lu, G. Qian, J. Ding, Y. Liu, and Q. Wang, “IoT-based signal enhancement and compression method for efficient motor bearing fault diagnosis,” IEEE Sens. J., vol. 21, no. 2, pp. 1820–1828, 2021, doi: 10.1109/JSEN.2020.3017768.
[56]    B. Yang, Y. Lei, F. Jia, N. Li, and Z. Du, “A polynomial Kernel induced distance metric to improve deep transfer learning for fault diagnosis of machines,” IEEE Trans. Ind. Electron., vol. 67, no. 11, pp. 9747–9757, 2020, doi: 10.1109/TIE.2019.2953010.
[57]    Z. Chen, J. Cen, and J. Xiong, “Rolling bearing fault diagnosis using time-frequency analysis and deep transfer convolutional neural network,” IEEE Access, vol. 8, pp. 150248–150261, 2020, doi: 10.1109/ACCESS.2020.3016888.
[58]    L. Wen, L. Gao, and X. Li, “A new deep transfer learning based on sparse auto-encoder for fault diagnosis,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 49, no. 1, pp. 136–144, 2019, doi: 10.1109/ TSMC.2017.2754287.
[59]    Y. L. Karnavas, S. Plakias, and I. D. Chasiotis, “Extracting spatially global and local attentive features for rolling bearing fault diagnosis in electrical machines using attention stream networks,” IET Electr. Power Appl., vol. 15, no. 7, pp. 903–915, 2021, doi: 10.1049/elp2.12063.
[60]    M. Afshar, S. Abdi, M. Ebrahimi, and S. Abolfazl Mortazavizadeh, “Static eccentricity fault detection in brushless doubly-fed induction machines based on motor current signature analysis,” IECON Proc. Industrial Electron. Conf., vol. 2019-Octob, pp. 1369–1374, 2019, doi: 10.1109/ IECON.2019.8926698.
[61]    Z. Masoumi, B. Moaveni, S. M. Mousavi Gazafrudi, and J. Faiz, “Air-gap eccentricity fault detection, isolation, and estimation for synchronous generators based on eigenvalues analysis,” ISA Trans., vol. 131, pp. 489–500, 2022, doi:
[62]    M. N. S. K. Shabbir, X. Liang, and S. Chakrabarti, “An ANOVA-based fault diagnosis approach for variable frequency drive-fed induction motors,” IEEE Trans. Energy Convers., vol. 04170, no. c, pp. 1–1, 2020, doi: 10.1109/tec.2020.3003838.
[63]    J. Grezmak, J. Zhang, P. Wang, K. A. Loparo, and R. X. Gao, “Interpretable convolutional neural network through layer-wise relevance propagation for machine fault diagnosis,” IEEE Sens. J., vol. 20, no. 6, pp. 3172–3181, 2020, doi: 10.1109/JSEN.2019.2958787.
[64]    S. Shao, S. McAleer, R. Yan, and P. Baldi, “Highly accurate machine fault diagnosis using deep transfer learning,” IEEE Trans. Ind. Informatics, vol. 15, no. 4, pp. 2446–2455, 2019, doi: 10.1109/TII.2018.2864759.
[65]    M. Garcia, P. A. Panagiotou, J. A. Antonino-Daviu, and K. N. Gyftakis, “Efficiency assessment of induction motors operating under different faulty conditions,” IEEE Trans. Ind. Electron., vol. 66, no. 10, pp. 8072–8081, 2019, doi: 10.1109/TIE.2018.2885719.
[66]    Y. Park et al., “Online detection and classification of rotor and load defects in PMSMs Based on Hall sensor measurements,” IEEE Trans. on Industry Applications, 2019, vol. 55, no. 4, pp. 3803–3812, doi: 10.1109/TIA.2019.2911252.
[67]    Y. Huang, C. H. Chen, and C. J. Huang, “Motor fault detection and feature extraction using rnn-based variational autoencoder,” IEEE Access, vol. 7, pp. 139086–139096, 2019, doi: 10.1109/ ACCESS.2019.2940769.
[68]    F. Ben Abid, M. Sallem, and A. Braham, “Robust Interpretable Deep Learning for Intelligent Fault Diagnosis of Induction Motors,” IEEE Trans. Instrum. Meas., vol. 69, no. 6, pp. 3506–3515, 2020, doi: 10.1109/TIM.2019.2932162.
[69]    P. B. Sangeetha and S. Hemamalini, “Rational-dilation wavelet transform based torque estimation from acoustic signals for fault diagnosis in a three-phase induction motor,” IEEE Trans. Ind. Informatics, vol. 15, no. 6, pp. 3492–3501, 2019, doi: 10.1109/TII.2018.2874463.
[70]    C. Li, J. Xiong, X. Zhu, Q. Zhang, and S. Wang, “Fault diagnosis method based on encoding time series and convolutional neural network,” IEEE Access, vol. 8, pp. 165232–165246, 2020, doi: 10. 1109/ACCESS.2020.3021007.
[71]    S. B. Jiang, P. K. Wong, and Y. C. Liang, “A fault diagnostic method for induction motors based on feature incremental broad learning and singular value decomposition,” IEEE Access, vol. 7, pp. 157796–157806, 2019, doi: 10.1109/ACCESS.2019.2950240.
[72]    S. B. Jiang, P. K. Wong, R. Guan, Y. Liang, and J. Li, “An efficient fault diagnostic method for three-phase induction motors based on incremental broad learning and non-negative matrix Factorization,” IEEE Access, vol. 7, pp. 17780–17790, 2019, doi: 10.1109/ACCESS.2019. 2895909.
[73]    S. Lu, G. Qian, Q. He, F. Liu, Y. Liu, and Q. Wang, “In situ motor fault diagnosis using enhanced convolutional neural network in an embedded system,” IEEE Sens. J., vol. 20, no. 15, pp. 8287–8296, 2020, doi: 10.1109/JSEN.2019.2911299.
[74]    T. A. Shifat and J. W. Hur, “ANN assisted multi sensor information fusion for BLDC motor fault diagnosis,” IEEE Access, vol. 9, pp. 9429–9441, 2021, doi: 10.1109/ACCESS.2021.3050243.
[75]    I. H. Kao, W. J. Wang, Y. H. Lai, and J. W. Perng, “Analysis of permanent magnet synchronous motor fault diagnosis based on learning,” IEEE Trans. Instrum. Meas., vol. 68, no. 2, pp. 310–324, 2019, doi: 10.1109/TIM.2018.2847800.
[76]    O. Zandi and J. Poshtan, “Fault diagnosis of brushless DC motors using built-In Hall sensors,” IEEE Sens. J., vol. 19, no. 18, pp. 8183–8190, 2019, doi: 10.1109/JSEN.2019.2917847.
[77]    D. Yu and H. Zhang, “Fault diagnosis method for submersible reciprocating pumping unit based on deep belief network,” IEEE Access, vol. 8, pp. 109940–109948, 2020, doi: 10.1109/ACCESS. 2020.3002376.
[78]    X. Wang, Z. Wang, Z. Xu, M. Cheng, W. Wang, and Y. Hu, “Comprehensive diagnosis and tolerance strategies for electrical faults and sensor faults in dual three-phase PMSM drives,” IEEE Trans. Power Electron., vol. 34, no. 7, pp. 6669–6684, 2019, doi: 10.1109/TPEL.2018.2876400.
[79]    D. Xiao, Y. Huang, L. Zhao, C. Qin, H. Shi, and C. Liu, “Domain adaptive motor fault diagnosis using deep transfer learning,” IEEE Access, vol. 7, pp. 80937–80949, 2019, doi: 10.1109/ ACCESS.2019.2921480.
[80]    M. Z. Ali, M. N. S. K. Shabbir, X. Liang, Y. Zhang, and T. Hu, “Machine learning-based fault diagnosis for single- and multi-faults in induction motors using measured stator currents and vibration signals,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2378–2391, 2019, doi: 10.1109/ TIA. 2019.2895797.
[81]    S. Shao, P. Wang, and R. Yan, “Generative adversarial networks for data augmentation in machine fault diagnosis,” Comput. Ind., vol. 106, pp. 85–93, 2019.
[82]    H. Liu, Z. Liu, W. Jia, D. Zhang, and J. Tan, “A novel imbalanced data classification method based on weakly supervised learning for fault diagnosis,” IEEE Trans. Ind. Informatics, vol. 18, no. 3, pp. 1583–1593, 2022, doi: 10.1109/TII.2021.3084132.
[83]    Y. Chen, S. Liang, W. Li, H. Liang, and C. Wang, “Faults and diagnosis methods of permanent magnet synchronous motors: A review,” Appl. Sci., vol. 9, no. 10, 2019, doi: 10.3390/app9102116.