Design of Miniaturized and Biocompatible Antenna with Y-Shaped Slots for Implantable Applications

Document Type : Research Article

Authors

1 Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran

2 Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran

3 Department of electrical engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran

Abstract

A new miniaturized antenna that covers the Industrial Scientific Medical (ISM) band 2.4-2.483.5 GHz is designed. The implantable antenna system consists of a rectangular patch with coaxial feed and Y slots. The compact size of the recommended antenna is 8 × 8 × 1.27 . A shorting pin is used for miniaturization. In the proposed antenna, the simulated −10 dB bandwidth is about 160 MHz. Enhanced bandwidth (2.39-2.55 GHz) operation can be achieved by introducing ground slots and moving feed and pin to the appropriate position. In a flat type implantable system, the antenna is capsulated with battery and electronic boards. The result was verified by CST software in both heterogeneous multi-layer (skin, fat, and muscle), and homogenous single layer (skin, muscle, stomach, small intestine, and colon) human tissue phantoms. To diagnose the effect of fabrication tolerance and dimensions of slots on impedance and bandwidth, the antenna is parametrically analyzed. For safety consideration and the effects of EM radiation on the human body, the Specific Absorption Rate (SAR) of the antenna is computed. The main features of the designed antenna are the gain value of -15.8 dBi, low SAR, small volume, and large bandwidth that make the proposed antenna an appropriate choice for implantable medical devices. The designed implantable antenna features have been compared with previously reported antennas.

Keywords

Main Subjects


[1] W. Greatbatch, C.F. Holmes, History of implantable devices, IEEE Eng Med Biol Mag, 10(3) (1991) 38-41.
[2] S. Kiani, P. Rezaei, M. Fakhr, A CPW-fed wearable antenna at ISM band for biomedical and WBAN applications, Wireless Networks, 27(1) (2021) 735-745.
[3] A. Zarkhoshk, P. Rezaei, A Compact Wearable Antenna for UWB and Bluetooth Applications, Tabriz Journal of Electrical Engineering, 48(2) (2018) 679-686.
[4] M. Najjariani, P. Rezaei, Three-Band, Flexible, Wearable Antenna with Circular Polarization, in:  Fundamental Research in Electrical Engineering, Springer, 2019, pp. 987-996.
[5] E. Atashpanjeh, P. Rezaei, Broadband conformal monopole antenna loaded with meandered arms for wireless capsule endoscopy, Wireless Personal Communications, 110(4) (2020) 1679-1691.
[6] J. Kim, Y. Rahmat-Samii, Implanted antennas inside a human body: Simulations, designs, and characterizations, IEEE Transactions on microwave theory and techniques, 52(8) (2004) 1934-1943.
[7] A. Kiourti, K.S. Nikita, A review of implantable patch antennas for biomedical telemetry: Challenges and solutions [wireless corner], IEEE Antennas and Propagation Magazine, 54(3) (2012) 210-228.
[8] A. Kiourti, K.S. Nikita, Recent advances in implantable antennas for medical telemetry [education column], IEEE Antennas and Propagation Magazine, 54(6) (2012) 190-199.
[9] A. Kiourti, K.S. Nikita, A review of in-body biotelemetry devices: Implantables, ingestibles, and injectables, IEEE Transactions on Biomedical Engineering, 64(7) (2017) 1422-1430.
[10] A. Kiourti, K.S. Nikita, Implantable Antennas: A Tutorial on Design, Fabrication, and In Vitro\/In Vivo Testing, IEEE Microwave Magazine, 15(4) (2014) 77-91.
[11] S.A. Salehi, M.A. Razzaque, I. Tomeo-Reyes, N. Hussain, IEEE 802.15. 6 standard in wireless body area networks from a healthcare point of view, in:  2016 22nd Asia-Pacific Conference on Communications (APCC), IEEE, 2016, pp. 523-528.
[12] S.A.A. Shah, H. Yoo, Scalp-implantable antenna systems for Increased Intracranial Pressure monitoring, IEEE Transactions on Antennas and Propagation, 66(4) (2018) 2170-2173.
[13] A. Basir, M. Zada, Y. Cho, H. Yoo, A dual-circular-polarized endoscopic antenna with wideband characteristics and wireless biotelemetric link characterization, IEEE Transactions on Antennas and Propagation, 68(10) (2020) 6953-6963.
[14] I.A. Shah, M. Zada, H. Yoo, Design and analysis of a compact-sized multiband spiral-shaped implantable antenna for scalp implantable and leadless pacemaker systems, IEEE Transactions on Antennas and Propagation, 67(6) (2019) 4230-4234.
[15] M. Zada, H. Yoo, A miniaturized triple-band implantable antenna system for bio-telemetry applications, IEEE Transactions on Antennas and Propagation, 66(12) (2018) 7378-7382.
[16] S. Hayat, S.A.A. Shah, H. Yoo, Miniaturized dual-band circularly polarized implantable antenna for capsule endoscopic system, IEEE Transactions on Antennas and Propagation, 69(4) (2020) 1885-1895.
[17] M. Yousaf, I.B. Mabrouk, M. Zada, A. Akram, Y. Amin, M. Nedil, H. Yoo, An ultra-miniaturized antenna with ultra-wide bandwidth characteristics for medical implant systems, IEEE Access, 9 (2021) 40086-40097.
[18] J. Blauert, Y.-S. Kang, A. Kiourti, In vivo testing of a miniature 2.4/4.8 GHz implantable antenna in postmortem human subject, IEEE Antennas and Wireless Propagation Letters, 17(12) (2018) 2334-2338.
[19] A.J. Alazemi, A. Iqbal, A High Data Rate Implantable MIMO Antenna for Deep Implanted Biomedical Devices, IEEE Transactions on Antennas and Propagation,  (2021).
[20] S. Bahrami, G. Moloudian, S.R. Miri-Rostami, T. Björninen, Compact Microstrip Antennas With Enhanced Bandwidth for the Implanted and External Subsystems of a Wireless Retinal Prosthesi, IEEE Transactions on Antennas and Propagation, 69(5) (2020) 2969-2974.
[21] F. Faisal, H. Yoo, A miniaturized novel-shape dual-band antenna for implantable applications, IEEE Transactions on Antennas and Propagation, 67(2) (2018) 774-783.
[22] R. Li, Y.-X. Guo, G. Du, A conformal circularly polarized antenna for Wireless Capsule Endoscope systems, IEEE Transactions on Antennas and Propagation, 66(4) (2018) 2119-2124.
[23] N. Ganeshwaran, J.K. Jeyaprakash, M.G.N. Alsath, V. Sathyanarayanan, Design of a dual-band circular implantable antenna for biomedical applications, IEEE Antennas and Wireless Propagation Letters, 19(1) (2019) 119-123.
[24] L.-J. Xu, Y. Bo, W.-J. Lu, L. Zhu, C.-F. Guo, Circularly polarized annular ring antenna with wide axial-ratio bandwidth for biomedical applications, IEEE Access, 7 (2019) 59999-60009.
[25] Y. Zhang, C. Liu, X. Liu, K. Zhang, X. Yang, A wideband circularly polarized implantable antenna for 915 MHz ISM-band biotelemetry devices, IEEE Antennas and Wireless Propagation Letters, 17(8) (2018) 1473-1477.
[26] R. Li, Y.-X. Guo, B. Zhang, G. Du, A miniaturized circularly polarized implantable annular-ring antenna, IEEE Antennas and Wireless Propagation Letters, 16 (2017) 2566-2569.
[27] S. Das, D. Mitra, A compact wideband flexible implantable slot antenna design with enhanced gain, IEEE Transactions on Antennas and Propagation, 66(8) (2018) 4309-4314.
[28] X.Y. Liu, Z.T. Wu, Y. Fan, E.M. Tentzeris, A miniaturized CSRR loaded wide-beamwidth circularly polarized implantable antenna for subcutaneous real-time glucose monitoring, IEEE Antennas and Wireless Propagation Letters, 16 (2016) 577-580.
[29] S. Gabriel, R.W. Lau, C. Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, Phys Med Biol, 41(11) (1996) 2271-2293.
[30] C. Gabriel, Dielectric properties of biological tissue: variation with age, Bioelectromagnetics, 26(S7) (2005) S12-S18.
[31] W.H. Bailey, R. Bodemann, J. Bushberg, C.-K. Chou, R. Cleveland, A. Faraone, K.R. Foster, K.E. Gettman, K. Graf, T. Harrington, Synopsis of IEEE Std C95. 1™-2019 “IEEE Standard for Safety Levels With Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz”, IEEE Access, 7 (2019) 171346-171356.
[32] Y. Liu, Y. Chen, H. Lin, F.H. Juwono, A novel differentially fed compact dual-band implantable antenna for biotelemetry applications, IEEE Antennas and Wireless Propagation Letters, 15 (2016) 1791-1794.
[33] Z.-J. Yang, S.-Q. Xiao, L. Zhu, B.-Z. Wang, H.-L. Tu, A circularly polarized implantable antenna for 2.4-GHz ISM band biomedical applications, IEEE Antennas and Wireless Propagation Letters, 16 (2017) 2554-2557.
[34] S. Bhattacharjee, S. Maity, S.R. Bhadra Chaudhuri, M. Mitra, Metamaterial‐inspired wideband biocompatible antenna for implantable applications, IET Microwaves, Antennas & Propagation, 12(11) (2018) 1799-1805.
[35] S. Hout, J.-Y. Chung, Design and characterization of a miniaturized implantable antenna in a seven-layer brain phantom, IEEE Access, 7 (2019) 162062-162069.