Lifetime Improvement of Perovskite Solar Cell, Using a Photoactive Phase Change Material

Document Type : Research Article


1 Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran

2 Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran - Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran


 Perovskite Solar Cells (PSCs) are the brilliant stars of the new generation photovoltaic 
technologies due to their superior features of perovskite material and high Power Conversion Efficiency 
(PCE) that has reached up to 25.5%. Their stability is the main challenge that should be addressed for 
the commercialization of PSCs. The perovskite structure is decomposed to its precursor in the face of 
continuous light irradiation (mainly UV light), humidity, and heat. In this paper, mesoporous PSCs with 
structure of FTO (400 nm)/Compact TiO2 (30 nm)/Mesoporous-TiO2 (330 nm)/CH3NH3PbI3 (270 
nm)/ P3HT (30 nm)/Au (100 nm) are fabricated in an uncontrolled environment. The UV light stability 
of the PSC is enhanced by adding a photoactive Phase Change Material (PCM) into the perovskite. The 
PCM undergoes trans-to-cis isomerization under UV light irradiation. Afterwards, the cis form absorbs 
the heat produced in the solar cell and converts it into its trans isomer in a reversible process. By this 
approach, the destructive effect of UV light and heat is prohibited, leading to the enhancement of PSC 
durability by almost 2.4 times compared to devices without PCM. Indeed, the PCE of the device with 
AzB reaches 67% of the initial PCE upon 120 min of light soaking under AM 1.5, while the device 
without AzB only keeps 28% of its initial PCE under the same condition. It should be noted that there is 
no significant difference in the PCE of both solar cells.


Main Subjects

[1] NREL, Best Research-Cell Efficiencies, in, NREL, 2021.
[2] X. Du, J. Li, G. Niu, J.-H. Yuan, K.-H. Xue, M. Xia, W. Pan, X. Yang, B. Zhu, J. Tang, Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging, Nature communications, 12(1) (2021) 1-9.
[3] M. Alidaei, M. Izadifard, M.E. Ghazi, V. Ahmadi, Efficiency enhancement of Perovskite Solar Cells using structural and morphological improvement of CH3NH3PbI3 absorber layers, Materials Research Express, 5(1) (2018) 016412.
[4] D. Giovanni, M. Righetto, Q. Zhang, J.W.M. Lim, S. Ramesh, T.C. Sum, Origins of the long-range exciton diffusion in perovskite nanocrystal films: photon recycling vs exciton hopping, Light: Science & Applications, 10(1) (2021) 2.
[5] N. Mansour Rezaei Fumani, F. Arabpour Roghabadi, M. Alidaei, S.M. Sadrameli, V. Ahmadi, F. Najafi, Prolonged Lifetime of Perovskite Solar Cells Using a Moisture-Blocked and Temperature-Controlled Encapsulation System Comprising a Phase Change Material as a Cooling Agent, ACS Omega, 5(13) (2020) 7106-7114.
[6] J. Torres, J. Sanchez-Diaz, J.M. Rivas, J. de la Torre, I. Zarazua, D. Esparza, Electrical properties and J-V modeling of perovskite (CH3NH3PbI3) solar cells after external thermal exposure, Solar Energy, 222 (2021) 95-102.
[7] M. Alidaei, m. Izadifard, m.E. Ghazi, Increasing of solar cell stability using Br-doped CH3NH3PbI3 perovskite absorber layers, Iranian Journal of Crystallography and Mineralogy, 27(1) (2019) 231-244.
[8] T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized TiO 2 with meso-superstructured organometal tri-halide Perovskite Solar Cells, Nature communications, 4(1) (2013) 1-8.
[9] S.-W. Lee, S. Kim, S. Bae, K. Cho, T. Chung, L.E. Mundt, S. Lee, S. Park, H. Park, M.C. Schubert, S.W. Glunz, Y. Ko, Y. Jun, Y. Kang, H.-S. Lee, D. Kim, UV Degradation and Recovery of Perovskite Solar Cells, Scientific Reports, 6 (2016) 38150.
[10] Q.Q. Ye, M. Li, X.B. Shi, M.P. Zhuo, K.L. Wang, F. Igbari, Z.K. Wang, L.S. Liao, UV-Stable and Highly Efficient Perovskite Solar Cells by Employing Wide Band gap NaTaO(3) as an Electron-Transporting Layer, ACS Appl Mater Interfaces, 12(19) (2020) 21772-21778.
[11] M. Alidaei, V. Ahmadi, S.M. Mousavi, F.A. Roghabadi, Stability improvement of Perovskite Solar Cell using photoswitchable and moisture resistant dual-function interfacial layer, Journal of Alloys and Compounds, 903 (2022) 163891.
[12] C.-H. Tsai, N. Li, C.-C. Lee, H.-C. Wu, Z. Zhu, L. Wang, W.-C. Chen, H. Yan, C.-C. Chueh, Efficient and UV-stable Perovskite Solar Cells enabled by side chain-engineered polymeric hole-transporting layers, Journal of Materials Chemistry A, 6(27) (2018) 12999-13004.
[13] F.A. Roghabadi, N.M.R. Fumani, M. Alidaei, V. Ahmadi, S.M. Sadrameli, High power UV-Light Irradiation as a New Method for Defect passivation in Degraded Perovskite Solar Cells to Recover and enhance the performance, Scientific reports, 9(1) (2019) 1-11.
[14] F.A. Roghabadi, N.M.R. Fumani, M. Alidaei, V. Ahmadi, S.M. Sadrameli, M. Izadifard, M.E. Ghazi, Recovering a degraded solar cell, in, Google Patents, 2019.
[15] C.S.G. Butler, J.P. King, L.W. Giles, J.B. Marlow, M.L.P. Vidallon, A. Sokolova, L. de Campo, K.L. Tuck, R.F. Tabor, Design and synthesis of an Azobenzene–betaine surfactant for photo-rheological fluids, Journal of Colloid and Interface Science, 594 (2021) 669-680.
[16] X. Xu, B. Wu, P. Zhang, Y. Xing, K. Shi, W. Fang, H. Yu, G. Wang, Arylazopyrazole-Based Dendrimer Solar Thermal Fuels: Stable Visible Light Storage and Controllable Heat Release, ACS Applied Materials & Interfaces, 13(19) (2021) 22655-22663.
[17] G. Cabré, A. Garrido-Charles, M. Moreno, M. Bosch, M. Porta-de-la-Riva, M. Krieg, M. Gascón-Moya, N. Camarero, R. Gelabert, J.M. Lluch, F. Busqué, J. Hernando, P. Gorostiza, R. Alibés, Rationally designed Azobenzene photoswitches for efficient two-photon neuronal excitation, Nature Communications, 10(1) (2019) 907.
[18] M. Alidaei, M. Izadifard, M.E. Ghazi, Improving the efficiency of Perovskite Solar Cells using modification of CH3NH3PbI3 active layer: the effect of Methylammonium Iodide loading time, Optical and Quantum Electronics, 52(4) (2020).
[19] S. Luo, W.A. Daoud, Crystal structure formation of CH3NH3PbI3-xClx perovskite, Materials, 9(3) (2016) 123.
[20] X.-M. Liu, X.-Y. Jin, Z.-X. Zhang, J. Wang, F.-Q. Bai, Theoretical study on the reaction mechanism of the thermal cis–trans isomerization of fluorine-substituted Azobenzene derivatives, RSC Advances, 8(21) (2018) 11580-11588.
[21] S.M. Mousavi, M. Alidaei, F. Arabpour Roghabadi, V. Ahmadi, S.M. Sadrameli, J. Vapaavuori, Stability improvement of MAPbI3-based Perovskite Solar Cells using a photoactive solid-solid Phase Change Material, Journal of Alloys and Compounds, 897 (2022) 163142.
[22] A. Bou, A. Pockett, D. Raptis, T. Watson, M.J. Carnie, J. Bisquert, Beyond Electrochemical Impedance Spectroscopy of Perovskite Solar Cells: Insights from the Spectral Correlation of the Electrooptical Frequency Techniques, The Journal of Physical Chemistry Letters, 11(20) (2020) 8654-8659.
[23] G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M.K. Nazeeruddin, One-Year stable Perovskite Solar Cells by 2D/3D interface engineering, Nature Communications, 8 (2017) 15684.
[24] E. Merino, M. Ribagorda, Control over molecular motion using the cis–trans photoisomerization of the azo group, Beilstein journal of organic chemistry, 8(1) (2012) 1071-1090.