[1]S. McGuire, “World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015,” Adv. Nutr., vol. 7, no. 2, pp. 418–419, 2016.
[2] A. Rahi, N. Sattarahmady and H. Heli (2016). Label free electrochemical aptasensing of the human prostate-specific antigen using gold nanospears, Talanta. 156, pp. 218–224.
[3]S. M. Cruz, A. F. Girão, G. Gonçalves and P.A. Marques (2016). Graphene: The Missing Piece for Cancer Diagnosis? Sensors. 16, pp. 137.
[4] Ruddon R.W. )2007(. Cancer Biology. Oxford University Press, USA .
[5] W. J. Catalona, “Prostate Cancer Detection in Men With Serum PSA Concentrations of 2.6 to 4.0 ng/mL and Benign Prostate Examination,” Jama, vol. 277, no. 18, p. 1452, 1997
[6] H. Lilja, J. Oldbring, G. Rannevik, and C. B. Laurell, “Seminal vesicle-secreted proteins and their reactions during gelation and liquefaction of human semen.,” J. Clin. Invest., vol. 80, no. 2, pp. 281–285, 1987
[7] S. M. Totten et al., “Multi-lectin Affinity Chromatography and Quantitative Proteomic Analysis Reveal Differential Glycoform Levels between Prostate Cancer and Benign Prostatic Hyperplasia Sera,” Sci. Rep., vol. 8, no. 1, pp. 1–13, 2018.
[8] I. E. Tothill, “Biosensors for cancer markers diagnosis,” Semin. Cell Dev. Biol., vol. 20, no. 1, pp. 55–62, 2009.
[9] M. Ferrari, R. Bashir, and S. Wereley, BioMEMS and biomedical nanotechnology; Volume IV: Biomedical sensing, processing and analysis. 2007.
[10] R. E. Madrid, R. Chehín, T.-H. Chen, and A. Guiseppi-Elie, “Biosensors and Nanobiosensors,” no. March, pp. 391–462, 2017.
[11] M. Pumera, “Nanocarbon electrochemistry,” SPR Electrochem., vol. 11, pp. 104–123, 2013.
[12] O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: A perspective of traditional methods and biosensors,” Biosens. Bioelectron., vol. 22, no. 7, pp. 1205–1217, 2007.
[13] S. M. Khoshfetrat and M. A. Mehrgardi, “Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode,” Bioelectrochemistry, vol. 114, pp. 24–32, 2017.
[14] Rna Aptamers 193 [14],” vol. 318, no. 1997, pp. 193–214, 2000.
[15] P. R. Nair and M. A. Alam, “Screening-limited response of NanoBiosensors,” Nano Lett., vol. 8, no. 5, pp. 1281–1285, 2008.
[16] Feng L, Chen Y, Ren J, Qu X (2011) A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32:2930–2937.
[17]S. Cao and J. Yu, “g-C3N4-Based Photocatalysts for Hydrogen Generation,” J. Phys. Chem. Lett., vol. 5, pp. 2101–2107, 2014.
[18] M. Omidi, G. Amoabediny, F. Yazdian, and M. Habibi-Rezaei, “Protein-based nanobiosensor for direct detection of hydrogen sulfide,” Epl, vol. 109, no. 1, 2015.
[19] Chen J, Yao B, Li C, Shi G (2013) An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229.
[20]D. Ma, J. Wu, M.C. Gao, Y.J. Xin, T.J. Ma, Y.Y. Sun, Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity, Chem. Eng. J. 290 (2016) 136–146.
[21] J. Tian, J. Huang, Y. Zhao, and S. Zhao, “Electrochemical immunosensor for prostatespecific antigen using a glassy carbon electrode modified with a nanocomposite containing gold nanoparticles supported with starch-functionalized multi-walled carbon nanotubes,” Microchim. Acta, vol. 178, no. 1–2, pp. 81–88, 2012.
[22] L. Han et al., “Enhanced conductivity of rGO/Ag NPs composites for electrochemical immunoassay of prostate-specific antigen,” Biosens. Bioelectron., vol. 87, pp. 466–472, 2017.
[23] Y. Zhao, H. Liu, L. Shi, W. Zheng, and X. Jing, “Electroactive Cu2O nanoparticles and Ag nanoparticles driven ratiometric electrochemical aptasensor for prostate specific antigen detection,” Sensors Actuators, B Chem., vol. 315, no. January, p. 128155, 2020.
[24] P. S. Nnamchi and C. S. Obayi, Electrochemical characterization of nanomaterials. Elsevier Ltd., 2018.
[25]
Navneet Kumar,
Vimal Chandra Srivastava. Simple Synthesis of Large Graphene Oxide Sheets via Electrochemical Method Coupled with Oxidation Process.
ACS Omega 3:8, 10233-10242, 2018.
[26] F. Duan, S. Zhang, L. Yang, Z. Zhang, L. He, and M. Wang, “Bifunctional aptasensor based on novel two-dimensional nanocomposite of MoS2 quantum dots and g-C3N4 nanosheets decorated with chitosan-stabilized Au nanoparticles for selectively detecting prostate specific antigen,” Anal. Chim. Acta, vol. 1036, pp. 121–132, 2018.
[27] H.D. Jang, S.K. Kim, H. Chang, J.W. Choi, 3D label-free prostate specific antigen (PSA) immunosensor based on graphene-gold composites, Biosens. Bioelectron. 63 (2015) 546–551.
https://doi.org/10.1016/j.bios.2014.08.008. 2015.
[28] J. Feng, Y. Li, M. Li, F. Li, J. Han, Y. Dong, Z. Chen, P. Wang, H. Liu, Q. Wei, A novel sandwich-type electrochemical immunosensor for PSA detection based on PtCu bimetallic hybrid (2D/2D) rGO/g-C3N4, Biosens. Bioelectron. 91 (2017) 441–448.
https://doi.org/10.1016/j.bios.2016.12.070, 2016.
[29]S. Rafique, W. Bin, A.S. Bhatti, Electrochemical immunosensor for prostate-specific antigens using a label-free second antibody based on silica nanoparticles and polymer brush, Bioelectrochemistry. 101 (2015) 75–83.
https://doi.org/10.1016/j.bioelechem.2014.08.001, 2014.
[30] Heydari-Bafrooei E, Askari S. Detection of Prostate Specific Antigen Using an Electrochemical Aptamer-Based Biosensor. Univ Med Sci 2018; 17 (2): 115-30.2018. [Farsi]