[1] L. Yue, H. Shen, J. Li, Q. Yuan, H. Zhang, L. Zhang, Image super-resolution: The techniques, applications, and future, Signal Processing, 128 (2016) 389-408.
[2] M. Protter, M. Elad, H. Takeda, P. Milanfar, Generalizing the Nonlocal-Means to Super-Resolution Reconstruction, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, 18 (2009) 36-51.
[3] L. Wang, S. Xiang, G. Meng, H. Wu, C. Pan, Edge-Directed Single-Image Super-Resolution Via Adaptive Gradient Magnitude Self-Interpolation, IEEE Transactions on Circuits and Systems for Video Technology, 23(8) (2013) 1289-1299.
[4] Q. Song, R. Xiong, D. Liu, Z. Xiong, F. Wu, W. Gao, Fast Image Super-Resolution via Local Adaptive Gradient Field Sharpening Transform, IEEE Transactions on Image Processing, 27(4) (2018) 1966-1980.
[5] D. Tao, J. Cheng, X. Lin, J. Yu, Local structure preserving discriminative projections for RGB-D sensor-based scene classification, Information Sciences, 320 (2015) 383-394.
[6] A. Marquina, S.J. Osher, Image Super-Resolution by TV-Regularization and Bregman Iteration, Journal of Scientific Computing, 37(3) (2008) 367-382.
[7] A. Buades, B. Coll, J. Morel, A non-local algorithm for image denoising, in: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005, pp. 60-65 vol. 62.
[8] C. Hong, Y. Dit-Yan, X. Yimin, Super-resolution through neighbor embedding, in: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., 2004, pp. I-I.
[9] R. Timofte, V. De, L.V. Gool, Anchored Neighborhood Regression for Fast Example-Based Super-Resolution, in: 2013 IEEE International Conference on Computer Vision, 2013, pp. 1920-1927.
[10] R. Timofte, V.D. Smet, L.V. Gool, A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution, in, 2014, pp. 111-126.
[11] C. Yang, M. Yang, Fast Direct Super-Resolution by Simple Functions, in: 2013 IEEE International Conference on Computer Vision, 2013, pp. 561-568.
[12] K. Zhang, B. Wang, W. Zuo, H. Zhang, L. Zhang, Joint Learning of Multiple Regressors for Single Image Super-Resolution, IEEE Signal Processing Letters, 23 (2015) 1-1.
[13] Y. Zhang, Y. Zhang, J. Zhang, Q. Dai, CCR: Clustering and Collaborative Representation for Fast Single Image Super-Resolution, IEEE Transactions on Multimedia, 18(3) (2016) 405-417.
[14] C. Dong, C.C. Loy, K. He, X. Tang, Learning a Deep Convolutional Network for Image Super-Resolution, 2014.
[15] J. Kim, J.K. Lee, K.M. Lee, Accurate Image Super-Resolution Using Very Deep Convolutional Networks, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1646-1654.
[16] C. Dong, C.C. Loy, X. Tang, Accelerating the Super-Resolution Convolutional Neural Network, 2016.
[17] K. Zhang, W. Zuo, L. Zhang, Learning a Single Convolutional Super-Resolution Network for Multiple Degradations, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 3262-3271.
[18] Y. Jianchao, J. Wright, T. Huang, M. Yi, Image super-resolution as sparse representation of raw image patches, in: 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8.
[19] J. Yang, J. Wright, T.S. Huang, Y. Ma, Image Super-Resolution Via Sparse Representation, IEEE Transactions on Image Processing, 19(11) (2010) 2861-2873.
[20] W. Dong, L. Zhang, G. Shi, X. Wu, Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization, IEEE Transactions on Image Processing, 20(7) (2011) 1838-1857.
[21] W. Dong, L. Zhang, G. Shi, X. Li, Nonlocally Centralized Sparse Representation for Image Restoration, IEEE Transactions on Image Processing, 22(4) (2013) 1620-1630.
[22] J. Li, J. Wu, H. Deng, J. Liu, A self-learning image super-resolution method via sparse representation and non-local similarity, Neurocomputing, 184 (2016) 196-206.
[23] T. Peleg, M. Elad, A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution, IEEE Transactions on Image Processing, 23(6) (2014) 2569-2582.
[24] A. Beck, M. Teboulle, Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems, IEEE Transactions on Image Processing, 18(11) (2009) 2419-2434.
[25] X. Li, H. He, R. Wang, D. Tao, Single Image Super-Resolution via Directional Group Sparsity and Directional Features, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, 24 (2015).
[26] M. Aharon, M. Elad, A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Transactions on Signal Processing, 54(11) (2006) 4311-4322.
[27] J. Zhang, D. Zhao, R. Xiong, S. Ma, W. Gao, Image Restoration Using Joint Statistical Modeling in a Space-Transform Domain, IEEE Transactions on Circuits and Systems for Video Technology, 24(6) (2014) 915-928.
[28] S. Yang, M. Wang, Y. Chen, Y. Sun, Single-Image Super-Resolution Reconstruction via Learned Geometric Dictionaries and Clustered Sparse Coding, IEEE Transactions on Image Processing, 21(9) (2012) 4016-4028.
[29] M. Bevilacqua, A. Roumy, C. Guillemot, M.-L. Alberi-Morel, Low-Complexity Single Image Super-Resolution Based on Nonnegative Neighbor Embedding, (2012).
[30] R. Zeyde, M. Elad, M. Protter, On Single Image Scale-Up Using Sparse-Representations, 2010.
[31] J. Huang, A. Singh, N. Ahuja, Single image super-resolution from transformed self-exemplars, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 5197-5206.
[32] D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, in: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, 2001, pp. 416-423 vol.412.
[33] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image Quality Assessment: From Error Visibility to Structural Similarity, Image Processing, IEEE Transactions on, 13 (2004) 600-612.
[34] E. Mikaeli, A. Aghagolzadeh, M. Azghani, “Single Image Super Resolution via curvelet based directional dictionaries,” 11thIranian Conf. on Machine Vision and Image Processing (MVIP), Qom, Iran, 2020.