1.Marzetta, T.L., Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Transactions on Wireless Communications, 2010. 9(11): p. 3590-3600.
2.Khormuji, M.N., Generalized Semi-Orthogonal Multiple-Access for Massive MIMO. IEEE 81st Vehicular Technology Conference, 2015.
3.Marzetta, H.Q.N.A.A.H.Y.E.G.L.T.L., Cell-Free Massive MIMO Versus Small Cells. IEEE Transactions on Wireless Communications, 2017. 16(3): p. 1834-1850.
4.Khormuji, A.K.M.J.E.M.N., Optimal Design of Semi-Orthogonal Multiple-Access Massive MIMO Systems. IEEE Communications Letters, 2017. 21(10): p. 2230-2233.
5.Duong, T.C.M.H.Q.N.M.E.T.Q., Pilot Power Control for Cell-Free Massive MIMO. IEEE Transactions on Vehicular Technology, 2018. 67(11): p. 11264-11268.
6.D’Andrea, S.B.C., Cell-Free Massive MIMO: User-Centric Approach. IEEE Wireless Communications Letters, 2017. 6(6): p. 706-709.
7.D'Andrea, S.B.C., User-Centric Communications versus Cell-free Massive MIMO for 5G Cellular Networks. 21th International ITG Workshop on Smart Antennas, 2017.
8.D’Elia, S.B.C.D.A.A.Z.C., User-Centric 5G Cellular Networks: Resource Allocation and Comparison With the Cell-Free Massive MIMO Approach. IEEE Transactions on Wireless Communications, 2019. 19(2).
9.Larsson, H.Q.N.L.-N.T.T.Q.D.M.M.E.G., On the Total Energy Efficiency of Cell-Free Massive MIMO. IEEE Transactions on Green Communications and Networking, 2017. 2(1): p. 25-39.
10.Marzetta, H.Y.T.L., Energy Efficiency of Massive MIMO: Cell-Free vs. Cellular. IEEE 87th Vehicular Technology Conference, 2018.
11.Emadi, H.M.M.J., Performance Analysis of Cell-Free Massive MIMO System With Limited Fronthaul Capacity and Hardware Impairments. IEEE Transactions on Wireless Communications, 2019. 19(2): p. 1038-1053.
12.Xiao, M.B.K.C.A.G.B.H.Q.N.M.D.P., Max–Min Rate of Cell-Free Massive MIMO Uplink With Optimal Uniform Quantization. IEEE Transactions on Communications, 2019. 67(10): p. 6795-6815.
13.Leung, M.Z.H.M.J.H.J.C.V.C.M., Statistical Delay-QoS Aware Joint Power Allocation and Relaying Link Selection for Free Space Optics Based Fronthaul Networks. IEEE Transactions on Communications, 2017. 66(3): p. 1124-1138.
14.Uysal, M.A.K.M., Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Communications Surveys & Tutorials, 2014. 16(4): p. 2231-2258.
15.Alouini, A.D.H.D.T.Y.A.-N.M.-S., Hybrid Radio/Free-Space Optical Design for Next Generation Backhaul Systems. IEEE Transactions on Communications, 2016. 64(6): p. 2563-2577.
16.Alouini, M.U.H.-C.Y.M.-S., Practical Switching-Based Hybrid FSO/RF Transmission and Its Performance Analysis. IEEE Photonics Journal 2014. 6(5).
17.Schober, V.J.D.S.M.M.U.R., Link Allocation for Multiuser Systems With Hybrid RF/FSO Backhaul: Delay-Limited and Delay-Tolerant Designs. IEEE Transactions on Wireless Communications, 2016. 15(5): p. 3281-3295.
18.Hranilovic, K.A.S., C-RAN uplink optimization using mixed radio and FSO fronthaul. IEEE/OSA Journal of Optical Communications and Networking, 2018. 10(6): p. 603-612.
19.Schober, M.N.V.J.R., Optimal Relay Selection for the Parallel Hybrid RF/FSO Relay Channel: Non-Buffer-Aided and Buffer-Aided Designs. IEEE Transactions on Communications, 2017. 65(7): p. 2794-2810.
20.Uysal, R.C.K.O.N.M., Centralized Light Access Network (C-LiAN): A Novel Paradigm for Next Generation Indoor VLC Networks. IEEE Access, 2017. 5: p. 19703-19710.
21.Pollin, J.B.A.G.Q.W.D.J.D.G.S., DenseVLC: a cell-free massive MIMO system with distributed LEDs. 14th International Conference on emerging Networking EXperiments and Technologies, 2018: p. 320-332.
22.Pouya Agheli, M.J.E., Hamzeh Beyranvand, Performance Analysis of Cell-free and User-Centric MIMO Networks with Optical Fronthaul and Backhaul Links. arXiv preprint arXiv:2011.06680, 2020.
23.Dhillon, C.S.M.A.H.S., Bandwidth Partitioning and Downlink Analysis in Millimeter Wave Integrated Access and Backhaul for 5G. IEEE Transactions on Wireless Communications 2018. 17(12): p. 8195-9210.
24.Zorzi, M.P.M.G.A.R.D.C.M., Distributed Path Selection Strategies for Integrated Access and Backhaul at mmWaves. IEEE Global Communications Conference, 2018.
25.Zorzi, M.P.M.G.T.Z.A.R.S.G.D.C.M., Integrated Access and Backhaul in 5G mmWave Networks: Potential and Challenges. IEEE Communications Magazine 2020. 58(3): p. 62-68.
26.Renaud, L.G.G.M.M.T.L.M.J.F.A.J.S.R.L.I.H.W.R.V.P.C.C., Integrated Wireless-Optical Backhaul and Fronthaul Provision Through Multicore Fiber. IEEE Access, 2020. 8: p. 146915-146922.
27.Dhillon, C.S.H.S., Millimeter Wave Integrated Access and Backhaul in 5G: Performance Analysis and Design Insights. IEEE Journal on Selected Areas in Communications, 2019. 37(12): p. 2669-2684.
28.Cover, J.A.T.T.M., Elements of information theory. John Wiley & Sons,, 2012.
29.T. L. Marzetta, E.G.L., H. Yang, and H. Q. Ngo, Fundamentals of massive MIMO. 2016: Cambridge: Cambridge University Press.