[1] Simon Ramo, John R. Whinnery and Theodore Van Duzer, Fields and Waves in Communication Electronics, Wiley, 1994.
[2] Rautio, James C., and Veysel Demir. "Microstrip conductor loss models for electromagnetic analysis." IEEE transactions on microwave theory and techniques 51, no. 3 (2003): 915-921.
[3] T. B. A. Senior, J. L. Volakis, Aproximate boundary conditions in electromagnetic, The Institution of Electrical Engineering, 1995.
[4] Gholipour, Alireza, Reza Faraji-Dana, Guy AE Vandenbosch, and Safieddin Safavi-Naeini. "Surface impedance modeling of plasmonic circuits at optical communication wavelengths." Journal of lightwave technology 31, no. 20 (2013): 3315-3322.
[5] Gholipour, Alireza, and Shokrollah Karimian. "Rectangular Nano-Wire Analysis at Terahertz and Optical Frequencies Using Interior-Exterior Method and Surface Impedance Model." In 2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC), pp. 143-146. IEEE, 2019.
[6] T. B. a. Senior and J. L. Volakis, “Generalized impedance boundary conditions in scattering,” Proc. IEEE, vol. 79, no. 10, pp. 1413–1420, 1991.
[7] K. Coperich and A. C. Cangellaris, “Enhanced skin effect for partial-element equivalent-circuit (PEEC) models,” Microw. Theory Tech. IEEE Trans., vol. 48, no. 9, pp. 1435–1442, 2000.
[8] Shiquan He; Sha, W.E.I.; Lijun Jiang; Choy, W.C.H.; Weng Cho Chew; Zaiping Nie; “Finite-Element-Based Generalized Impedance Boundary Condition for Modeling Plasmonic Nanostructures,” Nanotechnology, IEEE Trans., vol. 11, no. 2, pp. 336–345, 2012.
[9] Gholipour, Alireza, Reza Faraji-Dana, and Guy AE Vandenbosch. "High performance analysis of layered nanolithography masks by a surface impedance generating operator." JOSA A 34, no. 4 (2017): 464-471.
[10] G. Hanson, “On the applicability of the surface impedance integral equation for optical and near infrared copper dipole antennas,” Antennas Propagation, IEEE Trans., vol. 54, no. 12, pp. 3677–3685, 2006.
[11] K. Wang and D. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett., vol. 157401, no. April, pp. 1–4, 2006.
[12] J. Yang, Q. Cao, C. Zhou1, "Analytical Recurrence Formula for the Zeroth-order Metal Wire Plasmon of Terahertz Waves," J. Opt. Soc. Am. A, Vol. 27, No.7, July 2010.
[13] L. Knockaert, P. Van den Abeele, and D. De Zutter, “Surface impedance of cylinders and wedges: A Neumann approach,” Int. J. Electron. Commun., vol. 53, no. 1, pp. 11–17, 1999.
[14] L. Knockaert and D. De Zutter, “Integral equation for the fields inside a dielectric cylinder immersed in an incident E-wave,” Antennas Propagation, IEEE Trans., vol. 34, no. 8, pp. 1065–1067, 1986.
[15] Gholipour, A. "Analysis of optical nanostructures using the surface impedance generating operator." JOSA B 37, no. 2 (2020): 295-303.
[16] Weng Cho Chew, Mei Song Tong and Bin Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan, 2009.
[17] A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37, 5271-5283 (1998)