[1] M.A. Khan, T. Akram, M. Sharif, M.Y. Javed, N. Muhammad, M. Yasmin, An implementation of optimized framework for action classification using multilayers neural network on selected fused features, Pattern Analysis and Applications, 22(4) (2019) 1377-1397.
[2] K.-P. Chou, M. Prasad, D. Wu, N. Sharma, D.-L. Li, Y.-F. Lin, M. Blumenstein, W.-C. Lin, C.-T. Lin, Robust feature-based automated multi-view human action recognition system, IEEE Access, 6 (2018) 15283-15296.
[3] A. Abdelbaky, S. Aly, Human action recognition using short-time motion energy template images and PCANet features, Neural Computing and Applications, (2020) 1-14.
[4] R. Singh, S. Nigam, A.K. Singh, M. Elhoseny, Intelligent Wavelet Based Techniques for Advanced Multimedia Applications, in, Springer, 2020.
[5] A. Klaser, M. Marszałek, C. Schmid, A spatio-temporal descriptor based on 3d-gradients, in, 2008.
[6] R. Poppe, A survey on vision-based human action recognition, Image and vision computing, 28(6) (2010) 976-990.
[7] I. Laptev, On space-time interest points, International journal of computer vision, 64(2-3) (2005) 107-123.
[8] D.G. Lowe, Distinctive image features from scale-invariant keypoints, International journal of computer vision, 60(2) (2004) 91-110.
[9] P. Scovanner, S. Ali, M. Shah, A 3-dimensional sift descriptor and its application to action recognition, in: Proceedings of the 15th ACM international conference on Multimedia, 2007, pp. 357-360.
[10] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, Speeded-up robust features (SURF), Computer vision and image understanding, 110(3) (2008) 346-359.
[11] J. Uijlings, I.C. Duta, E. Sangineto, N. Sebe, Video classification with densely extracted hog/hof/mbh features: an evaluation of the accuracy/computational efficiency trade-off, International Journal of Multimedia Information Retrieval, 4(1) (2015) 33-44.
[12] T. Guha, R.K. Ward, Learning sparse representations for human action recognition, IEEE transactions on pattern analysis and machine intelligence, 34(8) (2011) 1576-1588.
[13] M.M. Moussa, E. Hamayed, M.B. Fayek, H.A. El Nemr, An enhanced method for human action recognition, Journal of advanced research, 6(2) (2015) 163-169.
[14] X. Sun, M. Chen, A. Hauptmann, Action recognition via local descriptors and holistic features, in: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, IEEE, 2009, pp. 58-65.
[15] M. Saremi, F. Yaghmaee, Efficient encoding of video descriptor distribution for action recognition, Multimedia Tools and Applications, 79(9) (2020) 6025-6043.
[16] S.N. Boualia, N.E.B. Amara, 3D CNN for Human Action Recognition, 2018.
[17] S. Ji, W. Xu, M. Yang, K. Yu, 3D convolutional neural networks for human action recognition, IEEE transactions on pattern analysis and machine intelligence, 35(1) (2012) 221-231.
[18] V.A. Chenarlogh, F. Razzazi, Multi-stream 3D CNN structure for human action recognition trained by limited data, IET Computer Vision, 13(3) (2018) 338-344.
[19] G. Yu, T. Li, Recognition of human continuous action with 3D CNN, in: International Conference on Computer Vision Systems, Springer, 2017, pp. 314-322.
[20] K. Liu, W. Liu, C. Gan, M. Tan, H. Ma, T-c3d: Temporal convolutional 3d network for real-time action recognition, in: Thirty-second AAAI conference on artificial intelligence, 2018.
[21] R.G. Baraniuk, M.B. Wakin, Random projections of smooth manifolds, Foundations of computational mathematics, 9(1) (2009) 51-77.
[22] M. Blank, L. Gorelick, E. Shechtman, M. Irani, R. Basri, Actions as space-time shapes, in: Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, IEEE, 2005, pp. 1395-1402.
[23] C. Schuldt, I. Laptev, B. Caputo, Recognizing human actions: a local SVM approach, in: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., IEEE, 2004, pp. 32-36.
[24] M.M. Moussa, E. Hamayed, M.B. Fayek, H.A. El Nemr, An enhanced method for human action recognition, Journal of advanced research, 6(2) (2015) 163-169.
[25] C. Liu, J. Liu, Z. He, Y. Zhai, Q. Hu, Y. Huang, Convolutional neural random fields for action recognition, Pattern recognition, 59 (2016) 213-224.