Design and fabrication of a rapid conductometric pH sensor based on metal-oxide technology

Document Type : Research Article


1 1 Micro Bio Technology Laboratory (MBTechLab), Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

2 Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

3 Faculty of Automobile Engineering, Iran University of Science and Technology, Tehran, Iran


A micro-fabricated metal-oxide based conductometric pH sensor is designed and fabricated in this manuscript. pH sensors have applications in various areas from farming to food processing, human health monitoring, industrial waste products investigation, etc. Accordingly, there is a relatively high demand for a reliable, rapid and precise pH sensor in the market. Relatively precise pH sensors have been already demonstrated for in-vitro analysis. Nevertheless, design and fabrication of pH sensors for in-vivo applications are still challenging. In this work, a relatively minute pH sensor is designed and fabricated. Thanks to the adopted fabrication method, the small footprint makes it suitable for monitoring of human stomach acid. A mixture of ZnO and SnO2 powders is used as the metal-oxide pH sensitive layer. Impedance spectroscopy is applied to investigate the frequency characteristics of the sensor. The pH sensitive layer behaves like a resistive load in relatively low frequencies and a reactive load in relatively high frequencies, as investigated using Impedance spectrometer. Interdigitated microelectrodes coated with the pH sensitive layer is used to detect the variations of impedance when introduced to a pH sample. The sensor demonstrated a relatively good sensitivity and short response time (less than 0.5 s) for monitoring of pH in the range of 1 to 7.


Main Subjects

[1]         A. Orville Beckman, “Apparatus for testing acidity,” Google Pat., 1936.
[2]         R. Martinez-Máñez, J. Soto, E. Garcia-Breijo, L. Gil, J. Ibáñez, and E. Gadea, “A multisensor in thick-film technology for water quality control,” Sensors Actuators A Phys., vol. 120, no. 2, pp. 589–595, 2005.
[3]         A. M. Gibson, N. Bratchell, and T. A. Roberts, “Predicting microbial growth: growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride and storage temperature,” Int. J. Food Microbiol., vol. 6, no. 2, pp. 155–178, 1988.
[4]         V. F. Curto, C. Fay, S. Coyle, R. Byrne, C. OToole, C. Barry, S. Hughes, N. Moyna, D. Diamond, and F. Benito-Lopez, “Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids,” Sensors Actuators B Chem., vol. 171, pp. 1327–1334, 2012.
[5]         D. H. Kohn, M. Sarmadi, J. I. Helman, and P. H. Krebsbach, “Effects of pH on human bone marrow stromal cells in vitro: implications for tissue engineering of bone,” J. Biomed. Mater. Res. An Off. J. Soc. Biomater. Japanese Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., vol. 60, no. 2, pp. 292–299, 2002.
[6]         Y. Lian, W. Zhang, L. Ding, X. Zhang, Y. Zhang, and X. Wang, “Nanomaterials for intracellular pH sensing and imaging,” in Novel Nanomaterials for Biomedical, Environmental and Energy Applications, Elsevier, 2019, pp. 241–273.
[7]         W. Lonsdale, M. Wajrak, and K. Alameh, “Manufacture and application of RuO2 solid-state metal-oxide pH sensor to common beverages,” Talanta, vol. 180, pp. 277–281, 2018.
[8]         P. P. Ravi, J. Lindner, H. Oechsner, and A. Lemmer, “Effects of target pH-value on organic acids and methane production in two-stage anaerobic digestion of vegetable waste,” Bioresour. Technol., vol. 247, pp. 96–102, 2018.
[9]         S. Zhuiykov, E. Kats, K. Kalantar-zadeh, M. Breedon, and N. Miura, “Influence of thickness of sub-micron Cu2O-doped RuO2 electrode on sensing performance of planar electrochemical pH sensors,” Mater. Lett., vol. 75, pp. 165–168, 2012.
[10]      H. Khani, M. K. Rofouei, P. Arab, V. K. Gupta, and Z. Vafaei, “Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion (II),” J. Hazard. Mater., vol. 183, no. 1–3, pp. 402–409, 2010.
[11]      L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak, and G. Stojanovic, “Sensing mechanism of RuO2--SnO2 thick film pH sensors studied by potentiometric method and electrochemical impedance spectroscopy,” J. Electroanal. Chem., vol. 759, pp. 82–90, 2015.
[12]      C.-N. Tsai, J.-C. Chou, T.-P. Sun, and S.-K. Hsiung, “Study on the sensing characteristics and hysteresis effect of the tin oxide pH electrode,” Sensors Actuators B Chem., vol. 108, no. 1–2, pp. 877–882, 2005.
[13]      L. Manjakkal, D. Szwagierczak, and R. Dahiya, “Metal oxides based electrochemical pH sensors: Current progress and future perspectives,” Prog. Mater. Sci., p. 100635, 2019.
[14]      H. Lee, T. K. Choi, Y. B. Lee, H. R. Cho, R. Ghaffari, L. Wang, H. J. Choi, T. D. Chung, N. Lu, T. Hyeon, S. H. Choi, and D.-H. Kim, “A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy,” Nat. Nanotechnol., vol. 11, p. 566, Mar. 2016.
[15]      D. Wencel, T. Abel, and C. McDonagh, “Optical chemical pH sensors,” Anal. Chem., vol. 86, no. 1, pp. 15–29, 2014.
[16]      I. Canals, F. Z. Oumada, M. Rosés, and E. Bosch, “Retention of ionizable compounds on HPLC. 6. pH measurements with the glass electrode in methanol--water mixtures,” J. Chromatogr. A, vol. 911, no. 2, pp. 191–202, 2001.
[17]      S. Kalsi, R. Mingels, S. Lu, Y. Cheong, and H. Morgan, “Metal oxide sensors for long term pH monitoring,” 2018.
[18]      J. H. Yoon, S. B. Hong, S.-O. Yun, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, “High performance flexible pH sensor based on polyaniline nanopillar array electrode,” J. Colloid Interface Sci., vol. 490, pp. 53–58, 2017.
[19]      P. Zhang, L. Li, D. Nordlund, H. Chen, L. Fan, B. Zhang, X. Sheng, Q. Daniel, and L. Sun, “Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation,” Nat. Commun., vol. 9, no. 1, pp. 1–10, 2018.
[20]      K. Arshak, E. Gill, A. Arshak, and O. Korostynska, “Investigation of tin oxides as sensing layers in conductimetric interdigitated pH sensors,” Sensors Actuators B Chem., vol. 127, no. 1, pp. 42–53, 2007.
[21]      M. S. Arefin, M. Bulut Coskun, T. Alan, J.-M. Redoute, A. Neild, and M. Rasit Yuce, “A microfabricated fringing field capacitive pH sensor with an integrated readout circuit,” Appl. Phys. Lett., vol. 104, no. 22, p. 223503, 2014.
[22]      N. Lei, P. Li, W. Xue, and J. Xu, “Simple graphene chemiresistors as pH sensors: fabrication and characterization,” Meas. Sci. Technol., vol. 22, no. 10, p. 107002, 2011.
[23]      C. Cane, I. Gracia, and A. Merlos, “Microtechnologies for pH ISFET chemical sensors,” Microelectronics J., vol. 28, no. 4, pp. 389–405, 1997.
[24]      M. S. Arefin, M. B. Coskun, T. Alan, A. Neild, J.-M. Redoute, and M. R. Yuce, “A MEMS capacitive pH sensor for high acidic and basic solutions,” in SENSORS, 2014 IEEE, 2014, pp. 1792–1794.
[25]      L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak, and R. P. Socha, “Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements,” Sensors Actuators B Chem., vol. 204, pp. 57–67, 2014.
[26]      J. C. Chou and L. P. Liao, “Study of TiO2 thin films for ion sensitive field effect transistor application with rf sputtering deposition,” Jpn. J. Appl. Phys., vol. 43, no. 1R, p. 61, 2004.
[27]      G. M. Da Silva, S. G. Lemos, L. A. Pocrifka, P. D. Marreto, A. V Rosario, and E. C. Pereira, “Development of low-cost metal oxide pH electrodes based on the polymeric precursor method,” Anal. Chim. Acta, vol. 616, no. 1, pp. 36–41, 2008.
[28]      L. Santos, J. P. Neto, A. Crespo, D. Nunes, N. Costa, I. M. Fonseca, P. Barquinha, L. Pereira, J. Silva, R. Martins, and others, “WO3 nanoparticle-based conformable pH sensor,” ACS Appl. Mater. Interfaces, vol. 6, no. 15, pp. 12226–12234, 2014.
[29]      A. Sardarinejad, D. K. Maurya, and K. Alameh, “The effects of sensing electrode thickness on ruthenium oxide thin-film pH sensor,” Sensors Actuators A Phys., vol. 214, pp. 15–19, 2014.
[30]      W.-D. Huang, H. Cao, S. Deb, M. Chiao, and J.-C. Chiao, “A flexible pH sensor based on the iridium oxide sensing film,” Sensors Actuators A Phys., vol. 169, no. 1, pp. 1–11, 2011.
[31]      H.-H. Li, W.-S. Dai, J.-C. Chou, and H.-C. Cheng, “An Extended-Gate Field-Effect Transistor With Low-Temperature Hydrothermally Synthesized Nanorods as pH Sensor,” IEEE electron device Lett., vol. 33, no. 10, pp. 1495–1497, 2012.
[32]      Y.-H. Liao and J.-C. Chou, “Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol--gel method,” Mater. Chem. Phys., vol. 114, no. 2–3, pp. 542–548, 2009.
[33]      L. Maiolo, S. Mirabella, F. Maita, A. Alberti, A. Minotti, V. Strano, A. Pecora, Y. Shacham-Diamand, and G. Fortunato, “Flexible pH sensors based on polysilicon thin film transistors and ZnO nanowalls,” Appl. Phys. Lett., vol. 105, no. 9, p. 93501, 2014.
[34]      P. F. Shahandashti, H. Pourkheyrollah, A. Jahanshahi, and H. Ghafoorifard, “Highly conformable stretchable dry electrodes based on inexpensive flex substrate for long-term biopotential (EMG/ECG) monitoring,” Sensors Actuators A Phys., vol. 295, pp. 678–686, 2019.
[35]      D. S. Campbell, L. I. Maissel, and R. Glang, “Handbook of thin film technology,” McGraw-Hill, New York, 1970) Ch, vol. 12, p. 3, 1970.
[36]      P. Awasthi, R. Mukherjee, S. P. O. Kare, and S. Das, “Impedimetric blood pH sensor based on MoS 2--Nafion coated microelectrode,” RSC Adv., vol. 6, no. 104, pp. 102088–102095, 2016.
[37]      L. Manjakkal, K. Zaraska, K. Cvejin, J. Kulawik, and D. Szwagierczak, “Potentiometric RuO2--Ta2O5 pH sensors fabricated using thick film and LTCC technologies,” Talanta, vol. 147, pp. 233–240, 2016.
[38]      P.-C. Chang, H.-Y. Chen, J.-S. Ye, F.-S. Sheu, and J. G. Lu, “Vertically Aligned Antimony Nanowires as Solid-State pH Sensors,” ChemPhysChem, vol. 8, no. 1, pp. 57–61, 2007.
[39]      B. Xu and W.-D. Zhang, “Modification of vertically aligned carbon nanotubes with RuO2 for a solid-state pH sensor,” Electrochim. Acta, vol. 55, no. 8, pp. 2859–2864, 2010.
[40]      J. Yang, T. J. Kwak, X. Zhang, R. McClain, W.-J. Chang, and S. Gunasekaran, “Digital pH test strips for in-field pH monitoring using iridium oxide-reduced graphene oxide hybrid thin films,” ACS Sensors, vol. 1, no. 10, pp. 1235–1243, 2016.