[1] Esram T, Chapman PL. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energy Convers 2007;22(2):439–49.
[2] De Brito MAG, Galotto L, Sampaio LP, de Azevedo e Melo G, Canesin CA. Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans Indus Electr 2013;60(3):1156–67.
[3] Ishaquea K, Salamb Z. A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition. Renew Sustain Energy Rev 2013;19(March):475–88.
[4] Jain S, Agarwal V. Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems. IET Electr Power Appl 2007;1(5):753–62.
[5] Femia N, Granozio D, Petrone S, Spagnuolo G, Vittelli M. Predictive & adaptive MPPT perturb and observe method. IEEE Trans Aerosp Electron Syst 2007;43(3):934–50.
[6] Casadei D, Grandi G, Rossi C. Single-phase single-stage photovoltaic generation system based on a ripple correlation control maximum power point tracking. IEEE Trans Energy Convers 2006;21(2):562–8.
[7] Abdelsalam AK, Massoud AM, Ahmed S, Enjeti P. High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids. IEEE Trans Power Electron 2011;26(4):1010–21.
[8] Qiang M, Mingwei S, Liying L, Guerrero JM. A novel improved variable step-size incremental-resistance MPPT method for PV systems. IEEE Trans Industr Electron 2011;58(6):2427–34.
[9] Fangrui L, Shanxu D, Fei L, Bangyin L, Yong K. A variable step size INC MPPT method for PV systems. IEEE Trans Industr Electron 2008;55(7):2622–8.
[10] Sera D, Teodorescu R, Hantschel J, Knoll M. Optimized maximum power point tracker for fast-changing environmental conditions. IEEE Trans Industr Electron 2008;55(7):2629–37.
[11] Weidong X, Ozog N, Dunford WG. Topology study of photovoltaic interface for maximum power point tracking. IEEE Trans Industr Electron 2007;54(3):1696–704.
[12] Karlisa AD, Kottasb TL, Boutalisb YS. A novel maximum power point tracking method for PV systems using fuzzy cognitive networks (FCN). Electric Power Syst Res 2007;77(3–4):315–27.
[13] Kulaksız AA, Akkaya R. A genetic algorithm optimized ANN-based MPPT algorithm for a stand-alone PV system with induction motor drive. Sol Energy 2012;86(9):2366–75.
[14] Bahgata ABG, Helwab NH, Ahmadb GE, El Shenawyb ET. Maximum power point tracking controller for PV systems using neural networks. Renew Energy 2005;30(8):1257–68.
[15] Hiyama, Takashi, and Ken Kitabayashi. "Neural network based estimation of maximum power generation from PV module using environmental information." IEEE Transactions on Energy Conversion 12.3 (1997): 241-247.
[16] Salah CB, Ouali M. Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems. Electric Power Syst Res. 2011;81(1):43–50.
[17] Elobaid LM, Abdelsalam AK, Zakzouk EE. Artificial neural network based maximum power point tracking technique for PV systems. In: Proc of 38th annual conference on IEEE industrial electronics society, IECON; 2012. p. 937–42.
[18] Chiu YH, Luo YF, Huang JW, Liu YH. An ANN-based maximum power point tracking method for fast changing environments. In: Proc of 13th international symposium on advanced intelligent systems; 2012. p. 715–20.
[19] Seo JH, Im CH, Heo CG, Kim JK, Jung HK, Lee CG. Multimodal function optimization based on particle swarm optimization. IEEE Trans Magn 2006;42(4):1095–8. http://dx.doi.org/10.1109/TMAG.2006.871568.
[20] Miyatake M, Veerachary M, Toriumi F, Fujii N, Ko H. Maximum power point tracking of multiple photovoltaic arrays: a PSO approach. IEEE Trans Aerosp Electron Syst 2011;47(1):367–80.
[21] Koutroulis E, Blaabjerg F. A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions. IEEE J Photovoltaics 2012;2(2):184–90.
[22] Nguyen TL, Low K-S. A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems. IEEE Trans Industr Electron October 2010;57(10):3456–67.
[23] Ji YH, Jun DY, Kim JG, Kim JH, Lee TW, Won CY. A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions. IEEE Trans Power Electron 2011;26(4):1001–9.
[24] Patel H, Agarwal V. Maximum power point tracking scheme for PV systems operating under partially shaded conditions. IEEE Trans Ind Electron 2008;55(4):1689–98.
[25] Boztepe M, Guinjoan F, Velasco-Quesada G, Silvestre S, Chouder A, Karatepe E. Global MPPT scheme for photovoltaic string inverters based on restricted voltage window search algorithm. IEEE Trans Industr Electron 2014;61(7):3302–12.
[26] Syafaruddin, Karatepe E, Hiyama T. Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions. IET Renew Power Gener 2009;3(2):239–53.
[27] Alajmi BN, Ahmed KH, Finney SJ, Williams BW. A maximum power point tracking technique for partially shaded photovoltaic systems in microgrids. IEEE Trans Industr Electron 2013;60(4):1596–606.
[28] Peng L, Yaoyu L, Seem JE. Sequential ESC-based global MPPT control for photovoltaic array with variable shading. IEEE Trans Sustain Energy 2011;2(3):348–58.
[29] Kazmi S, Goto H, Ichinokura O, Guo Hai-Jiao. An improved and very efficient MPPT controller for PV systems subjected to rapidly varying atmospheric conditions and partial shading. In: Proc of the Australasian power engineering conference; 2009. p. 1–6.
[30] Ahmed J, Salam Z. A maximum power point tracking (MPPT) for PV system using Cuckoo Search with partial shading capability. Appl Energy 2014;119(15):118–30.
[31] Mamarelis E, Petrone G, Spagnuolo G. A two-steps algorithm improving the P&O steady state MPPT efficiency. Appl Energy 2014;113(January):414–21.
[32] Punitha K, Devaraj D, Sakthivel S. Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions. Energy 2013;62(1):330–40.
[33] Ishaque K, Salam Z, Shamsudin A, Amjad M. A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm. Appl Energy 2012;99(April):414–22.
[34] Ghosh A, Dehuri S. Evolutionary algorithms for multi-criterion optimization: a survey. Int J Comput Inform Sci 2004;2(1):38–57.
[35] Daraban S, Petreus D, Morel C. A novel global MPPT based on genetic algorithms for photovoltaic systems under the influence of partial shading. In:39th annual conference of the IEEE industrial electronics society, IECON; 2013.
[36] Sareni B, Krahenbuhl L. Fitness sharing and niching method revisited. IEEE Trans Evol Comput 1998;2(3):97–106.
http://dx.doi.org/10.1109/ 4235.735432.
[37] Hooke R, Jeeves TA. Direct search solution of numerical and statistical problems. J Assoc Comput Mach 1961;8(2):212–29.
[38] Dilettoso E, Rizzo SA, Salerno N. A parallel version of the self-adaptive low high evaluation evolutionary-algorithm for electromagnetic device optimization. IEEE Trans Magn 2014;50(2):633–6.
http://dx.doi.org/10.1109/ TMAG.2013.2284928.
[39] Liu YH, Chen JH, Huang JW. Global maximum power point tracking algorithmfor PV systems operating under partially shaded conditions using the segmentation search method. Sol Energy 2014;103(May):350–63.
[40] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems (CRC Press, 2012).
[41] C. S. Solanki, Solar Photovoltaics: Fundamentals, Technologies and Applications (PHI Learning Pvt. Ltd., 2015).
[42] Chatrenour, N., Razmi, H., & Doagou-Mojarrad, H. Improved double integral sliding mode MPPT controller based parameter estimation for a stand-alone photovoltaic system. Energy Conversion and Management 2017, 139, 97-109.
[43] Habibi, Mehran, and Alireza Yazdizadeh. "New MPPT controller design for PV arrays using neural networks (Zanjan City Case Study)." International Symposium on Neural Networks. Springer, Berlin, Heidelberg, 2009.
[44] F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Trans. Power Electron. 19(5), 1184–1194 (2004).