[1] M. Levin, C.G. Stevenson, Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering, Annual review of biomedical engineering, 14 (2012) 295-323.
[2] M. Levin, Molecular bioelectricity in developmental biology: new tools and recent discoveries: control of cell behavior and pattern formation by transmembrane potential gradients, Bioessays, 34(3) (2012) 205-217.
[3] Q. Balzano, Proposed test for detection of nonlinear responses in biological preparations exposed to RF energy, Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 23(4) (2002) 278-287.
[4] M.G. Moisescu, P. Leveque, M.A. Verjus, E. Kovacs, L.M. Mir, 900 MHz modulated electromagnetic fields accelerate the clathrin‐mediated endocytosis pathway, Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 30(3) (2009) 222-230.
[5] Q. Balzano, RF nonlinear interactions in living cells–II: Detection methods for spectral signatures, Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 24(7) (2003) 483-488.
[6] Q. Balzano, A. Sheppard, RF nonlinear interactions in living cells–I: nonequilibrium thermodynamic theory, Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 24(7) (2003) 473-482.
[7] J. Juutilainen, A. Höytö, T. Kumlin, J. Naarala, Review of possible modulation‐dependent biological effects of radiofrequency fields, Bioelectromagnetics, 32(7) (2011) 511-534.
[8] S. Bawin, L. Kaczmarek, W. Adey, Effects of modulated VHF fields on the central nervous system, Annals of the New York Academy of Sciences, 247(1) (1975) 74-81.
[9] C. Blackman, J. Elder, C. Weil, S. Benane, D. Eichinger, D. House, Induction of calcium‐ion efflux from brain tissue by radio‐frequency radiation: Effects of modulation frequency and field strength, Radio Science, 14(6S) (1979) 93-98.
[10] T. Nikolova, J. Czyz, A. Rolletschek, P. Blyszczuk, J.r. Fuchs, G. Jovtchev, J.r. Schuderer, N. Kuster, A.M. Wobus, Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells, The FASEB journal, 19(12) (2005) 1686-1688.
[11] E. Markovà, L.O. Malmgren, I.Y. Belyaev, Microwaves from mobile phones inhibit 53BP1 focus formation in human stem cells more strongly than in differentiated cells: possible mechanistic link to cancer risk, Environmental Health Perspectives, 118(3) (2009) 394-399.
[12] D. Shahbazi-Gahrouei, B. Hashemi-Beni, Z. Ahmadi, Effects of RF-EMF exposure from GSM mobile phones on proliferation rate of human adipose-derived stem cells: An in-vitro study, Journal of biomedical physics & engineering, 6(4) (2016) 243.
[13] A. Ahlbom, U. Bergqvist, J. Bernhardt, J. Cesarini, M. Grandolfo, M. Hietanen, A. Mckinlay, M. Repacholi, D.H. Sliney, J.A. Stolwijk, Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health physics, 74(4) (1998) 494-521.
[14] M. Saviz, I. Tavakolnia, A. Banaei, M. shakiba-Herfeh, A. Barzegari, R. Faraji-Dana, Design and fabrication of a dual-polarization waveguide applicator for bioelectromagnetic experiments in the GSM frequency band, in: 2nd Iranian Conference on Bioelectromagnetics, Tehran, Iran, 2013.
[15] L.Y. Sun, D.K. Hsieh, P.C. Lin, H.T. Chiu, T.W. Chiou, Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation, Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 31(3) (2010) 209-219.
[16] S. Mayer‐Wagner, A. Passberger, B. Sievers, J. Aigner, B. Summer, T.S. Schiergens, V. Jansson, P.E. Müller, Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells, Bioelectromagnetics, 32(4) (2011) 283-290.
[17] N Jooyan, B Goliaei, B Bigdeli, R Faraji-Dana, A Zamani, M Entezami, S M J Mortazavi. Direct and indirect eff ects of exposure to 900 MHz GSM radiofrequency electromagnetic fields on CHO cell line: Evidence of bystander effect by non-ionizing radiation. Environmental Research 174 (2019) 176–187
[18] M Durdik, P Kosik, E Markova, A Somsedikova, B Gajdosechova, E nikitina, E Horvathova, K Kozics, D Davis & I Belyaev. Microwaves from mobile phone induce reactive oxygen species but not DnA damage, preleukemic fusion genes and apoptosis in hematopoietic stem/progenitor cells. Scientific RepoRtS. 9(1) (2019) 16182.
[19] M.L. Pall, Electromagnetic fields act via activation of voltage‐gated calcium channels to produce beneficial or adverse effects, Journal of cellular and molecular medicine, 17(8) (2013) 958-965.
[20] V. S. Rao, I. A. Titushkin, E. G. Moros, W. F. Pickard, H. S. Thatte, et. al. Nonthermal Effects of Radiofrequency-Field Exposure on Calcium Dynamics in Stem Cell-Derived Neuronal Cells: Elucidation of Calcium Pathways. RADIATION RESEARCH 169, (2008), 319–329.
[21] Martin L. Pall. Wi-Fi is an important threat to human health. Environmental Research 164, 405–416 (2018)