[1] G. Pucihar, T. Kotnik, B. Valič, D. Miklavčič, Numerical determination of transmembrane voltage induced on irregularly shaped cells, Annals of biomedical engineering, 34(4) (2006) 642.
[2] S. Huclova, D. Erni, J. Fröhlich, Modelling and validation of dielectric properties of human skin in the MHz region focusing on skin layer morphology and material composition, Journal of Physics D: Applied Physics, 45(2) (2011) 025301.
[3] A. Chakraborty, R.K. Yadav, G.V. Reddy, A.K. Roy-Chowdhury, Cell resolution 3d reconstruction of developing multilayer tissues from sparsely sampled volumetric microscopy images, in: 2011 IEEE International Conference on Bioinformatics and Biomedicine, IEEE, 2011, pp. 378-383.
[4] J. Sebastián, S. Munoz, M. Sancho, J. Miranda, Analysis of the influence of the cell geometry, orientation and cell proximity effects on the electric field distribution from direct RF exposure, Physics in Medicine & Biology, 46(1) (2001) 213.
[5] D. Walker, B. Brown, R. Smallwood, D. Hose, D. Jones, Modelled current distribution in cervical squamous tissue, Physiological Measurement, 23(1) (2002) 159.
[6] T.R. Gowrishankar, J.C. Weaver, An approach to electrical modeling of single and multiple cells, Proceedings of the National Academy of Sciences, 100(6) (2003) 3203-3208.
[7] T.R. Gowrishankar, A.T. Esser, Z. Vasilkoski, K.C. Smith, J.C. Weaver, Microdosimetry for conventional and supra-electroporation in cells with organelles, Biochemical and biophysical research communications, 341(4) (2006) 1266-1276.
[8] S. Huclova, D. Erni, J. Fröhlich, Modelling effective dielectric properties of materials containing diverse types of biological cells, Journal of Physics D: Applied Physics, 43(36) (2010) 365405.
[9] A.E. Hartinger, R. Guardo, V. Kokta, H. Gagnon, A 3-D hybrid finite element model to characterize the electrical behavior of cutaneous tissues, IEEE Transactions on Biomedical Engineering, 57(4) (2009) 780-789.
[10] M. Saviz, R. Faraji-Dana, Realistic cell and organelle shape modeling for computational bioengineering: A new open-source toolbox, in: 2014 22nd Iranian Conference on Electrical Engineering (ICEE), IEEE, 2014, pp. 1859-1862.
[11] F. Sayyid, S. Kalvala, On the importance of modelling the internal spatial dynamics of biological cells, Biosystems, 145 (2016) 53-66.
[12] W.R. Holmes, L. Edelstein-Keshet, A comparison of computational models for eukaryotic cell shape and motility, PLoS computational biology, 8(12) (2012) e1002793.
[13] M. Kass, A. Witkin, D. Terzopoulos, Snakes: Active contour models, International journal of computer vision, 1(4) (1988) 321-331.
[14] J. Gielis, A generic geometric transformation that unifies a wide range of natural and abstract shapes, American journal of botany, 90(3) (2003) 333-338.
[15] P. Prusinkiewicz, A. Lindenmayer, The algorithmic beauty of plants.,(Springer-Verlag: New York), (1990).
[16] Sven, stlwrite - Write binary or ascii STL file., in, 2012.
[17] A.H. Aitkenhead, Polygon mesh voxelisation, in, 2010.
[18] SAVI toolbox ver 2.00, in, 2017.
[19] J. Gimsa, T. Müller, T. Schnelle, G. Fuhr, Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm, Biophysical journal, 71(1) (1996) 495-506.
[20] R.P. Joshi, Q. Hu, K.H. Schoenbach, Modeling studies of cell response to ultrashort, high-intensity electric fields-implications for intracellular manipulation, IEEE Transactions on Plasma Science, 32(4) (2004) 1677-1686.
[21] A. Molaei, M. Saviz, R. Faraji-Dana, Detailed modeling and numerical analysis of photoreceptor cells exposed to electromagnetic fields, in: 2011 19th Iranian Conference on Electrical Engineering, IEEE, 2011, pp. 1-6.