[1] H. Bevrani, B. François, and T. Ise, Microgrid Dynamics and Control, 1 edition. Hoboken, NJ: Wiley, (2017).
[2] D. E. Olivares et al., Trends in Microgrid Control, IEEE Trans. Smart Grid, 5(4) (2014) 1905–1919.
[3] X. Zhang, J. Liu, T. Liu, and L. Zhou, A novel power distribution strategy for parallel inverters in islanded mode microgrid, in Applied Power Electronics Conference and Exposition (APEC), (2010) pp. 2116–2120.
[4] M. B. Delghavi and A. Yazdani, Islanded-Mode Control of Electronically Coupled Distributed-Resource Units Under Unbalanced and Nonlinear Load Conditions, IEEE Trans. Power Deliv., 26(2) (2011) 661–673.
[5] H. Karimi, H. Nikkhajoei, and R. Iravani, Control of an Electronically-Coupled Distributed Resource Unit Subsequent to an Islanding Event, IEEE Trans. Power Deliv., 23(1) (2008) 493–501.
[6] M. N. Marwali and A. Keyhani, Control of distributed generation systems-Part I: Voltages and currents control, IEEE Trans. Power Electron., 19(6) (2004) 1541–1550.
[7] A. Elrayyah, Y. Sozer, and M. Elbuluk, A novel load flow analysis for particle-swarm optimized microgrid power sharing, in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), (2013) pp. 297–302.
[8] J. C. Vasquez, J. M. Guerrero, M. Savaghebi, J. Eloy-Garcia, and R. Teodorescu, Modeling, Analysis, and Design of Stationary-Reference-Frame Droop-Controlled Parallel Three-Phase Voltage Source Inverters, IEEE Trans. Ind. Electron., 60(4) (2013)1271–1280.
[9] S. M. Ashabani and Y. A. R. I. Mohamed, General Interface for Power Management of Micro-Grids Using Nonlinear Cooperative Droop Control, IEEE Trans. Power Syst., 28(3) (2013) 2929–2941.
[10] M. Babazadeh and H. Karimi, A Robust Two-Degree-of-Freedom Control Strategy for an Islanded Microgrid, IEEE Trans. Power Deliv., 28(3) (2013) 1339–1347.
[11] Y. Xia, Y. Peng, and W. Wei, Triple droop control method for ac microgrids, IET Power Electron., 10(13) (2017) 1705–1713.
[12] S. Peyghami, H. Mokhtari, and F. Blaabjerg, Decentralized Load Sharing in a Low-Voltage Direct Current Microgrid With an Adaptive Droop Approach Based on a Superimposed Frequency, IEEE J. Emerg. Sel. Top. Power Electron., . 5(3) (2017) 1205–1215.
[13] A. Ketabi, S. S. Rajamand, and M. Shahidehpour, Power sharing in parallel inverters with different types of loads, Transm. Distrib. IET Gener., 11(10) (2017) 2438–2447.
[14] S. Gholami, M. Aldeen, and S. Saha, Control Strategy for Dispatchable Distributed Energy Resources in Islanded Microgrids, IEEE Trans. Power Syst., 33(1) (2018) 141–152.
[15] J. P. Lopes, C. L. Moreira, and A. G. Madureira, Defining control strategies for microgrids islanded operation, IEEE Trans. Power Syst., 21(2) (2006) 916–924.
[16] M. M. Rezaei and J. Soltani, Robust control of an islanded multi-bus microgrid based on input-output feedback linearisation and sliding mode control, Transm. Distrib. IET Gener., 9(15) (2015) 2447–2454.
[17] B. Zhao, X. Zhang, and J. Chen, Integrated Microgrid Laboratory System, IEEE Trans. Power Syst., 27(4) (2012) 2175–2185.
[18] S.-W. Lee and B.-H. Cho, Master–Slave Based Hierarchical Control for a Small Power DC-Distributed Microgrid System with a Storage Device, Energies, 9(11) (2016) 880.
[19] A. Mortezaei, M. G. Simoes, M. Savaghebi, J. M. Guerrero, and A. Al-Durra, Cooperative Control of Multi-Master–Slave Islanded Microgrid With Power Quality Enhancement Based on Conservative Power Theory, IEEE Trans. Smart Grid, 9(4) (2018) 2964–2975.
[20] A. Kahrobaeian and Y. A. I. Mohamed, Direct single-loop μ-synthesis voltage control for suppression of multiple resonances in microgrids with power-factor correction capacitors, IEEE Trans. Smart Grid, 4(2) (2013) 1151–1161.
[21] P. Li, Z. Yin, and Y. Li, The realization of flexible photovoltaic power grid-connection μ-synthesis robust control in microgrid, in Proc. IEEE PES Gen. Meeting Conf. Expo., National Harbor, MD, USA, (2014) pp. 1–5.
[22] H. Bevrani, M. R. Feizi, S. Ataee, Robust Frequency Control in an Islanded Microgrid: H∞ and μ-Synthesis Approaches, IEEE Trans. on Smart grid, 7(2) (2015) 706-717.
[23] Z. Chen, A. Luo, H. Wang, Y. Chen, M. Li, and Y. Huang, Adaptive sliding-mode voltage control for inverter operating in islanded mode in microgrid, Int. J. Electr. Power Energy Syst., 66 (2015) 133–143.
[24] M. B. Delghavi, S. Shoja-Majidabad, and A. Yazdani, Fractional-Order Sliding-Mode Control of Islanded Distributed Energy Resource Systems, IEEE Trans. Sustain. Energy, 7(4) (2016) 1482–1491.
[25] M. B. Delghavi and A. Yazdani, Sliding-Mode Control of AC Voltages and Currents of Dispatchable Distributed Energy Resources in Master-Slave-Organized Inverter-Based Microgrids, IEEE Trans. Smart Grid, 10(1) (2019) 980-991.
[26] V. Nasirian, Q. Shafiee, J. M. Guerrero, F. L. Lewis, and A. Davoudi, Droop-Free Distributed Control for AC Microgrids, IEEE Trans. Power Electron., 31(2) (2016) 1600–1617.
[27] S. K. Gudey and R. Gupta, Recursive fast terminal sliding mode control in voltage source inverter for a low-voltage microgrid system, Transm. Distrib. IET Gener., 10(7) (2016) 1536–1543.
[29] Y. Tang, P. Ju, H. He, C. Qin, and F. Wu, Optimized control of DFIG based wind generation using sensitivity analysis and particle swarm optimization, IEEE Trans. on Smart Grid, 4(1) (2013) 509– 520.