[1] P. Bauer, G. Radn´oti, S. Healy, C. Cardinali, GNSS radio occultation constellation observing system experiments, Monthly Weather Review 142 (2) (2014) 555–572.
[2] A. Finger, Satellite positioning and navigation: Fundamentals, operation and application of global navigation satellite systems, AEUE-International Journal of Electronics and Communications 7 (64) (2010) 694–695.
[3] C. Ao, G. Hajj, T. Meehan, D. Dong, B. Iijima, A. Mannucci, E. Kursinski, Rising and setting GPS occultations by use of open-loop tracking, Journal of Geophysical Research: Atmospheres 114 (D4).
[4] G. Beyerle, F. Zus, Open-loop GPS signal tracking at low elevation angles from a ground-based observation site, Atmospheric Measurement Techniques 10 (1) (2017) 15.
[5] K.-N. Wang, J. L. Garrison, U. Acikoz, J. S. Haase, B. J. Murphy, P. Muradyan, T. Lulich, Open-Loop Tracking of Rising and Setting GPS Radio-Occultation Signals From an Airborne Platform: Signal Model and Error Analysis, IEEE Transactions on Geoscience and Remote Sensing 54 (7) (2016) 3967–3984.
[6] S. V. Sokolovskiy, Tracking tropospheric radio occultation signals from low Earth orbit, Radio Science 36 (3) (2001) 483–498.
[7] A. Helm, O. Montenbruck, J. Ashjaee, S. Yudanov, G. Beyerle, R. Stosius, M. Rothacher, GORS-a GNSS occultation, reflectometry and scatterometry space receiver .
[8] S. Sokolovskiy, Nonlinear resonant circuit devices, U.S. Patent 6,731,906 B2.
[9] S. V. Sokolovskiy, Modeling and inverting radio occultation signals in the moist troposphere, Radio Science 36 (3) (2001) 441–458.
[10] S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, J. Johnson, Postprocessing of L1 GPS radio occultation signals recorded in open-loop mode, Radio Science 44 (2).
[11] S. Sokolovskiy, C. Rocken, D. Hunt, W. Schreiner, J. Johnson, D. Masters, S. Esterhuizen, GPS profiling of the lower troposphere from space: Inversion and demodulation of the open-loop radio occultation signals, Geophysical research letters 33 (14).
[12] K.-N.Wang, Signal analysis and radio holographic methods for airborne radio occultations, Ph.D. thesis, Purdue University, 2015.
[13] M. Gorbunov, Radio-holographic analysis of Microlab-1 radio occultation data in the lower troposphere, Journal of Geophysical Research: Atmospheres 107 (D12).
[14] E. R. Kursinski, G. A. Hajj, S. S. Leroy, B. Herman, The GPS radio occultation technique, Terrestrial, atmospheric, and oceanic sciences 11 (1) (2000) 53–114.
[15] M. Gorbunov, Canonical transform method for processing radio occultation data in the lower troposphere, Radio Science 37 (5).
[16] M. E. Gorbunov, L. Kornblueh, Analysis and validation of GPS/MET radio occultation data, Journal of Geophysical Research: Atmospheres 106 (D15) (2001) 17161–17169.
[17] A. S. Jensen, M. S. Lohmann, H.-H. Benzon, A. S. Nielsen, Full spectrum inversion of radio occultation signals, Radio Science 38 (3) (2003) 6–1.
[18] L. Adhikari, F. Xie, J. S. Haase, Application of the full spectrum inversion algorithm to simulated airborne GPS radio occultation signals, Atmospheric Measurement Techniques 9 (10) (2016) 5077.
[19] M. Gorbunov, K. Lauritsen, Analysis of wave fields by Fourier integral operators and their application for radio occultations, Radio Science 39 (4).
[20] A. S. Jensen, M. S. Lohmann, A. S. Nielsen, H.-H. Benzon, Geometrical optics phase matching of radio occultation signals, Radio science 39 (3).
[21] K. Hocke, A. Pavelyev, O. Yakovlev, L. Barthes, N. Jakowski, Radio occultation data analysis by the radioholographic method, Journal of Atmospheric and Solar-Terrestrial Physics 61 (15) (1999) 1169–1177.
[22] S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, On the uncertainty of radio occultation inversions in the lower troposphere, Journal of Geophysical Research: Atmospheres 115 (D22).
[23] Sørensen, Mikael, and Lieven De Lathauwer. "Multidimensional harmonic retrieval via coupled canonical polyadic decomposition—Part II: Algorithm and multirate sampling." IEEE Transactions on Signal Processing 65.2 (2016): 528-539.
[24] P. Stoica, R. L. Moses, Introduction to spectral analysis, vol. 1, Prentice hall Upper Saddle River, 1997.
[25] S. Marple, Digital signal analysis with applications, Prentir. c-Hall, Englcwood Cliffs, NJ.
[26] K. Cui, W. Wu, J. Huang, X. Chen, N. Yuan, DOA estimation of LFM signals based on STFT and multiple invariance ESPRIT, AEU-International Journal of Electronics and Communications 77 (2017) 10–17.
[27] Y. Tian, X. Sun, Passive localization of mixed sources jointly using MUSIC and sparse signal reconstruction, AEU-International Journal of Electronics and Communications 68 (6) (2014) 534–539.
[28] B. G. Quinn, Estimating frequency by interpolation using Fourier coefficients, IEEE Transactions on Signal Processing 42 (5) (1994) 1264–1268.
[29] M. D. Macleod, Fast nearly ML estimation of the parameters of real or complex single tones or resolved multiple tones, IEEE Transactions on Signal processing 46 (1) (1998) 141–148.
[30] Y. Zakharov, V. Baronkin, T. Tozer, DFT-based frequency estimators with narrow acquisition range, IEE Proceedings-Communications 148 (1) (2001) 1–7.
[31] E. Aboutanios, S. Reisenfeld, Frequency estimation and tracking for low earth orbit satellites, in: Vehicular Technology Conference, 2001. VTC 2001 Spring, vol. 4, 3003–3004, 2001.
[32] B. G. Quinn, Estimation of frequency, amplitude, and phase from the DFT of a time series, IEEE transactions on Signal Processing 45 (3) (1997) 814–817.
[33] L. Mohammadi, S. Amiri, Performance Analysis of Different Frequency Estimation Methods in GNSSRO Receivers with Open Loop Tracking, The Modares Journal of Electrical Engineering 13 (2) (2013) 29–42.
[34] E. Jacobsen and P. Kootsookos, "Fast, accurate frequency estimators," IEEE Signal Processing Magazine, March 2007.
[35] V. Vetterling, W. Press, S. Teukolsky and B. Flannery, Numerical Recipes in C, Cambridge, United Kingdom: Cambridge Univ. Press, ch. 10., 1992.
[36] P. Voglewede, "Parabola approximation for peak determination," Global DSP Magazine, vol. 3, no. 5, p. 13–17, May 2004.
[37] A. Candan, "A method for fine resolution frequency estimation from three DFT samples," IEEE SIGNAL PROCESSING LETTERS, vol. 18, no. 6, p. 351–354, June 2011.
[38] Roy, R. and T. Kailath, “Espritestimation of signal parameters via rotational invariance techniques. IEEE Transactions on acoustics, speech, and signal processing, July 1989. 37: p. 984–995.
[39] Roy, R., A. Paulraj, and T. Kailath, ESPRIT--A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Transactions on Acoustics, Speech and Signal Processing, Oct 1986. 34(5): p. 1340-1342.
[40] M. E. Gorbunov, A. S. Gurvich, L. Kornblueh, Comparative analysis of radio holographic methods of processing radio occultation data, Radio science 35 (4) (2000) 1025–1034.
[41] L. Priebe, M. P. Swenholt, R. Persson, Use of multiple sample frequencies to resolve ambiguities in band-folded digital receivers, February 2000, US Patent 6,031,869.
[42] H. Lee, H.-G. Ryu, Compensation of RF impairment in multi-band receiver based on RF sub-sampling, AEU-International Journal of Electronics and Communications 66 (8) (2012) 613–618.
[43] M. R. Yuce, A. Tekin, W. Liu, Design and performance of a wideband sub-sampling front-end for multi-standard radios, AEU-International Journal of Electronics and Communications 62 (1) (2008) 41–48.