The Optimal Power Flow of Multiple Energy Carriers in Networked Multi-Carrier Microgrid

Document Type : Research Article


Department of Electrical Engineering, Islamic Azad University, Kashan Branch, Kashan, Iran.


The future distribution network comprising different energy carriers will include small-scale energy resources (SSERs) and loads, known as a Networked multi-carrier microgrid (NMCMG). This concept not only leads to an efficient reduction in operation costs, but also encompasses the energy transformation between gas and electric networks at combined nodes, as well as district heating networks. In this paper, the combined natural gas and electricity optimal power flow (GEOPF) is employed to represent the inter-area transmission networks. The optimal GEOPF of NMCMG, which is represented as an energy hub system, is formulated as an optimization problem that is solved by applying a mixed-integer nonlinear programming (MINLP) technique. The proposed model is capable of minimizing the system costs by utilizing various sources and integrating the multiple-energy infrastructures as well as handling the energy management of the network. Simulations are performed on a system with three microgrids including combined heat and power (CHP), photovoltaic arrays, wind turbines, and energy storages in order to fulfill the required multiple demands. In the proposed model, microgrids are in grid-connected mode in order to exchange power when required. The results of the simulation demonstrate that GEOPF guarantees the regulation of power demand and power transaction in the multi-carrier microgrid (MCMG) and the main grid.


Main Subjects

[1]      Saito N, Niimura T, Koyanagi K, Yokoyama R. Trade-off analysis of autonomous microgrid sizing with PV, diesel, and battery storage. 2009 IEEE Power Energy Soc. Gen. Meet. PES ’09, 2009. doi:10.1109/PES.2009.5275820.
[2]      Ipakchi A, Albuyeh F. Grid of the future. IEEE Power Energy Mag 2009;7:52–62. doi:10.1109/MPE.2008.931384.
[3]      U.S. Department of Energy. The Smart Grid: An Introduction. Communication 2010;99:48. doi:10.1016/B978-1-59749-570-7.00011-X.
[4]      Kienzle F, Favre-Perrod P, Arnold M, Andersson G. Multi-energy delivery infrastructures for the future. 2008 First Int. Conf. Infrastruct. Syst. Serv. Build. Networks a Bright. Futur., IEEE; 2008, p. 1–5. doi:10.1109/INFRA.2008.5439681.
[5]      Sheikhi A, Ranjbar AM, Oraee H. Financial analysis and optimal size and operation for a multicarrier energy system. Energy Build 2012;48:71–8. doi:10.1016/j.enbuild.2012.01.011.
[6]      Shahidehpour M. Our aging power systems: infrastructure and life extension issues [Guest Editorial. IEEE Power Energy Mag 2006;4:22–76. doi:10.1109/MPAE.2006.1632450.
[7]      Cai N, Nga NTT, Mitra J. Economic dispatch in microgrids using multi-agent system. 2012 North Am. Power Symp. NAPS 2012, 2012. doi:10.1109/NAPS.2012.6336435.
[8]      Nikmehr N, Najafi Ravadanegh S. Optimal Power Dispatch of Multi-Microgrids at Future Smart Distribution Grids. IEEE Trans Smart Grid 2015;6:1648–57. doi:10.1109/TSG.2015.2396992.
[9]      Niu M, Huang W, Guo J, Su L. Research on economic operation of grid-connected microgrid. Power Syst Technol 2010;34:38–42.
[10]    Shi Q, Geng G, Jiang Q. Real-time optimal energy dispatch of standalone microgrid. Zhongguo Dianji Gongcheng Xuebao(Proceedings Chinese Soc. Electr. Eng., vol. 32, 2012, p. 26–35.
[11]    Zakariazadeh A, Jadid S, Siano P. Multi-objective scheduling of electric vehicles in smart distribution system. Energy Convers Manag 2014;79:43–53. doi:10.1016/j.enconman.2013.11.042.
[12]    Esmat A, Magdy A, ElKhattam W, ElBakly AM. A novel Energy Management System using Ant Colony Optimization for micro-grids. 2013 3rd Int Conf Electr Power Energy Convers Syst 2013:1–6. doi:10.1109/EPECS.2013.6713023.
[13]    Koutsopoulos I, Tassiulas L. Challenges in demand load control for the smart grid. Network, IEEE 2011;25:16–21. doi:10.1109/MNET.2011.6033031.
[14]    Motevasel M, Seifi AR. Expert energy management of a micro-grid considering wind energy uncertainty. Energy Convers Manag 2014;83:58–72. doi:10.1016/j.enconman.2014.03.022.
[15]    Guerrero JM, Chandorkar M, Lee T, Loh PC. Advanced Control Architectures for Intelligent Microgrids; Part I: Decentralized and Hierarchical Control. Ind Electron IEEE Trans 2013;60:1254–62. doi:10.1109/TIE.2012.2194969.
[16]    Arnold M, Andersson G. Decomposed electricity and natural gas optimal power flow. 16th Power Syst Comput Conf (PSCC 08) 2008;56:1417–1425.
[17]    Correa-Posada CM, Sánchez-Martin P. Security-constrained optimal power and natural-gas flow. IEEE Trans Power Syst 2014;29:1780–7. doi:10.1109/TPWRS.2014.2299714.
[18]    Andersson G. The influence of combined power, gas, and thermal networks on the reliability of supply n.d.
[19]    Kargarian A, Falahati B, Fu Y, Baradar M. Multiobjective optimal power flow algorithm to enhance multi-microgrids performance incorporating IPFC. IEEE Power Energy Soc. Gen. Meet., 2012. doi:10.1109/PESGM.2012.6345605.
[20]    An SAS, Li QLQ, Gedra TW. Natural gas and electricity optimal power flow. 2003 IEEE PES Transm Distrib Conf Expo IEEE Cat No03CH37495 2003;1:138–43. doi:10.1109/TDC.2003.1335171.
[21]    Geidl M, Andersson G. A modeling and optimization approach for multiple energy carrier power flow. 2005 IEEE Russ. Power Tech, 2005, p. 1–7. doi:10.1109/PTC.2005.4524640.
[22]    Reinbold V, Dinh V-B, Tenfen D, Delinchant B, Saelens D. Optimal operation of building microgrids--comparison with mixed-integer linear and continuous non-linear programming approaches. COMPEL-The Int J Comput Math Electr Electron Eng 2018;37:603–16.
[23]    Davatgaran V, Saniei M, Mortazavi SS. Optimal bidding strategy for an energy hub in energy market. Energy 2018. doi:10.1016/
[24]    Vakili R, Afsharnia S, Golshannavaz S. Interconnected microgrids: Optimal energy scheduling based on a game-theoretic approach. Int Trans Electr Energy Syst 2018:e2603.
[25]    Hussain A, Lee J-H, Kim H-M. An Optimal Energy Management Strategy for Thermally Networked Microgrids in Grid-Connected Mode. Int J Smart Home 2016;10:239–58. doi:10.14257/ijsh.2016.10.3.24.