[1] E. Hernández-Pereira, V. Bolón-Canedo, N. Sánchez- Maroño, D. Álvarez-Estévez, V. Moret-Bonillo, A. Alonso-Betanzos, A comparison of performance of K-complex classification methods using feature selection, Information Sciences, 328 (2016) 1-14.
[2] T. Lajnef, S. Chaibi, J.-B. Eichenlaub, P.M. Ruby, P.-E. Aguera, M. Samet, A. Kachouri, K. Jerbi, Sleep spindle and K-complex detection using tunable Q-factor wavelet transform and morphological component analysis, Frontiers in human neuroscience, 9 (2015).
[3] A.L. Pinto, I.S. Fernández, J.M. Peters, S. Manganaro, J.M. Singer, M. Vendrame, S.P. Prabhu, T. Loddenkemper, S.V. Kothare, Localization of sleep spindles, k-complexes, and vertex waves with subdural electrodes in children, Journal of Clinical Neurophysiology, 31(4) (2014) 367-374.
[4] V. Kokkinos, G.K. Kostopoulos, Human non.rapid eye movement stage II sleep spindles are blocked upon spontaneous K.complex coincidence and resume as higher frequency spindles afterwards, Journal of sleep research, 20(1pt1) (2011) 57-72.
[5] http://www.tcts.fpms.ac.be/~devuyst/Databases/ DatabaseKcomplexes/
[6] V. Kokkinos, A.M. Koupparis, G.K. Kostopoulos, An intra-K-complex oscillation with independent and labile frequency and topography in NREM sleep, Frontiers in human neuroscience, 7 (2013).
[7] W.O. Tatum IV, Handbook of EEG interpretation, Demos Medical Publishing, 2014.
[8] T.A. Camilleri, K.P. Camilleri, S.G. Fabri, Automatic detection of spindles and K-complexes in sleep EEG using switching multiple models, Biomedical Signal Processing and Control, 10 (2014) 117-127.
[9] T. Babaie, S. Chawla, R. Abeysuriya, Sleep analytics and online selective anomaly detection, in: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2014, pp. 362-371.
[10] Z.R. Zamir, N. Sukhorukova, H. Amiel, A. Ugon, C. Philippe, Convex optimisation-based methods for k-complex detection, Applied Mathematics and Computation, 268 (2015) 947-956.
[11] A. Parekh, I.W. Selesnick, D.M. Rapoport, I. Ayappa, Detection of K-complexes and sleep spindles (DETOKS) using sparse optimization, Journal of neuroscience methods, 251 (2015) 37-46.
[12] I. Daubechies, J. Lu, H.-T. Wu, Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool, Applied and computational harmonic analysis, 30(2) (2011) 243-261.
[13] C. Yücelbaş, Ş. Yücelbaş, S. Özşen, G. Tezel, S. Küççüktürk, Ş. Yosunkaya, Automatic detection of sleep spindles with the use of STFT, EMD and DWT methods, Neural Computing and Applications, (2016) 1-17.
[14] G. Thakur, E. Brevdo, N.S. Fučkar, H.-T. Wu, The synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications, Signal Processing, 93(5) (2013) 1079-1094.
[15] Z. Ghanbari, M.H. Moradi, Synchrosqueezing transform: Application in the analysis of the K-complex pattern, in: Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering (ICBME), 2016 23rd Iranian Conference on, IEEE, 2016, pp. 221-225.
[16] M.M. Kabir, R. Tafreshi, D.B. Boivin, N. Haddad, Enhanced automated sleep spindle detection algorithm based on synchrosqueezing, Medical & biological engineering & computing, 53(7) (2015) 635-644.
[17] H.-T. Wu, Y.-H. Chan, Y.-T. Lin, Y.-H. Yeh, Using synchrosqueezing transform to discover breathing dynamics from ECG signals, Applied and Computational Harmonic Analysis, 36(2) (2014) 354-359.
[18] H.-T. Wu, S.-S. Hseu, M.-Y. Bien, Y.R. Kou, I. Daubechies, Evaluating physiological dynamics via synchrosqueezing: Prediction of ventilator weaning, IEEE Transactions on Biomedical Engineering, 61(3) (2014) 736-744.
[19] S. Devuyst, T. Dutoit, P. Stenuit, M. Kerkhofs, Automatic K-complexes detection in sleep EEG recordings using likelihood thresholds, in: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, IEEE, 2010, pp. 4658-4661.
[20] J.M. O’Toole, A. Temko, N. Stevenson, Assessing instantaneous energy in the EEG: a non-negative, frequency-weighted energy operator, in: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, IEEE, 2014, pp. 3288-3291.
[21] L.K. Krohne, R.B. Hansen, J.A. Christensen, H.B. Sorensen, P. Jennum, Detection of K-complexes based on the wavelet transform, in: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, IEEE, 2014, pp. 5450-5453.