[1] D.S. Bayard, S.R. Ploen, High accuracy inertial sensors from inexpensive components, in, Google Patents, 2005.
[2] H. Chang, L. Xue, W. Qin, G. Yuan, W. Yuan, An integrated MEMS gyroscope array with higher accuracy output, Sensors, 8(4) (2008) 2886-2899.
[3] H. Chang, L. Xue, C. Jiang, M. Kraft, W. Yuan, Combining numerous uncorrelated MEMS gyroscopes for accuracy improvement based on an optimal Kalman filter, IEEE Transactions on Instrumentation and Measurement, 61(11) (2012) 3084-3093.
[4] C. Jiang, L. Xue, H. Chang, G. Yuan, W. Yuan, Signal processing of MEMS gyroscope arrays to improve accuracy using a 1st order markov for rate signal modeling, Sensors, 12(2) (2012) 1720-1737.
[5] L. Xue, L. Wang, T. Xiong, C. Jiang, W. Yuan, Analysis of dynamic performance of a Kalman filter for combining multiple MEMS gyroscopes, micromachines, 5(4) (2014) 1034-1050.
[6] H. Martin, P. Groves, M. Newman, R. Faragher, A new approach to better low-cost MEMS IMU performance using sensor arrays, in, The Institute of Navigation, 2013.
[7] M. Tanenhaus, D. Carhoun, T. Geis, E. Wan, A. Holland, Miniature IMU/INS with optimally fused low drift MEMS gyro and accelerometers for applications in GPS-denied environments, in: Position Location and Navigation Symposium (PLANS), 2012 IEEE/ION, IEEE, 2012, pp. 259-264.
[8] I. Skog, J.-O. Nilsson, P. Handel, An open-source multi inertial measurement unit (MIMU) platform, in: Inertial Sensors and Systems (ISISS), 2014 International Symposium on, IEEE, 2014, pp. 1-4.
[9] R. Rasoulzadeh, A.M. Shahri, Implementation of A low-cost multi-IMU hardware by using a homogenous multi-sensor fusion, in: Control, Instrumentation, and Automation (ICCIA), 2016 4th International Conference on, IEEE, 2016, pp. 451-456.
[10] G. Yuan, W. Yuan, L. Xue, J. Xie, H. Chang, Dynamic performance comparison of two Kalman filters for rate signal direct modeling and differencing modeling for combining a MEMS gyroscope array to improve accuracy, Sensors, 15(11) (2015) 27590-27610.
[11] I. Skog, J.-O. Nilsson, P. Händel, A. Nehorai, Inertial Sensor Arrays, Maximum Likelihood, and Cramér–Rao Bound, IEEE Transactions on Signal Processing, 64(16) (2016) 4218-4227.
[12] A. Unknown, IEEE Standard Specification Format Guide and Test Procedure for Coriolis Vibratory Gyros, IEEE Standards, 1431 1-79.
[13] N. El-Sheimy, H. Hou, X. Niu, Analysis and modeling of inertial sensors using Allan variance, IEEE Transactions on instrumentation and measurement, 57(1) (2008) 140-149.
[14] R.J. Vaccaro, A.S. Zaki, Statistical modeling of rate gyros, IEEE Transactions on Instrumentation and Measurement, 61(3) (2012) 673-684.
[15] R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory, Journal of basic engineering, 83(1) (1961) 95-108.
[16] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches, John Wiley & Sons, 2006.
[17] R.S. Bucy, P.D. Joseph, Filtering for stochastic processes with applications to guidance, American Mathematical Soc., 1987.
[18] M. Grewal, A. Andrews, Kalman theory, theory and practice using MATLAB, in, John Wiley & Sons, Inc, 2008.
[19] C. Chen, Linear System Theory and Design. New York: Holt, Rinehart and Winston, Decoupling with stability for linear periodic systems, 765 (1984).
[20] Q. Gan, C.J. Harris, Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion, IEEE Transactions on Aerospace and Electronic systems, 37(1) (2001) 273-279.
[21] N. Assimakis, M. Adam, A. Douladiris, Information filter and kalman filter comparison: Selection of the faster filter, International Journal of Information Engineering, 2(1) (2012) 1-5.
[22] D.W. Allan, Statistics of atomic frequency standards, Proceedings of the IEEE, 54(2) (1966) 221-230.
[23] InvenSens MPU9150 Motion Sensor Document number: PS-MPU9150A, Rev4.0
[24] NXP (Phillips),LPC17xx 32-bit ARM Cortex-M3 microcontroller, Rev. 5.3.