Application of Signal Processing Tools for Fault Diagnosis in Induction Motors-A Review-Part II

Document Type : Review Article

Authors

Center of Excellence on Applied Electromagnetic Systems, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

Abstract

The use of efficient signal processing tools (SPTs) to extract proper indices for the fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The 2nd part of this two-part paper is, in turn, divided into two parts. Part two covers the signal processing techniques which can be applied to non-stationary conditions. In this paper, all utilized SPTs for non-stationary conditions have been employed in details for fault detection in IMs. Then, their competency and their drawbacks to extract indices in the transient state modes are investigated from different aspects. The considerable experimental results are given to certify the present discussion. Different kinds of faults including eccentricity, broken bar, and bearing faults as major internal faults in IMs are investigated.

Keywords

Main Subjects


[1] M. Pineda-sanchez, J. Perez-cruz, J. Pons-llinares, V. Climente-alarcon, and J. A. Antonino-daviu, Application of the Teager – Kaiser energy operator to the fault diagnosis of induction motors, IEEE Transactions on Energy Conversion, 28(4) (2013) 1036–1044.
[2] R. Yan and R. Gao, 21 wavelet transform: A mathematical tool for non-stationary signal processing in measurement science part 2 - a series of tutorials in instrumentation, IEEE Magazine on Instrum. Meas. (2009) 35–44.
[3] J. Milimonfared, H. M. Kelk, S. Nandi, A. D. Minassians, and H. A. Toliyat, A novel approach for broken-rotor-bar detection in cage induction motors, IEEE Transactions on Industry Applications, 35(5) (1999) 1000–1006.
[4] R. Yan, R. X. Gao, and X. Chen, Wavelets for fault diagnosis of rotary machines: A review with applications, Signal Processing, Part A, 96 (2014) 1–15.
[5] M. E. H. Benbouzid, M. Vieira, and C. Theys, Induction motors’ faults detection and localization using stator current advanced signal processing techniques, IEEE Transactions on Power Electronics, 14(1) (1999) 14–22.
[6] J. Pons-Llinares, J. A. Antonino-Daviu, M. Riera-Guasp, M. Pineda-Sanchez, and V. Climente-Alarcon, Induction motor diagnosis based on a transient current analytic wavelet transform via frequency B-splines, IEEE Transactions on Industrial Electronics, 58(5) (2011) 1530–1544.
[7] D. J. T. Siyambalapitiya, P. G. McLaren, and P. P. Acarnley, A rotor condition monitor for squirrel-cage induction machines, IEEE Transactions on Industry Applications, 23(2) {1987) 334–340.
[8] C. Yang, T. J. Kang, D. Hyun, S. B. Lee, J. A. Antonino- Daviu, and J. Pons-Llinares, Reliable detection of induction motor rotor faults under the rotor axial air duct iInfluence, IEEE Energy Conversion Congress and Exposition, 50(4) (2013) 2508–2515.
[9] S. H. Kia and H. Henao, Diagnosis of broken-bar fault in induction machines using discrete wavelet transform without slip estimation, 45(4), (2009) 1395–1404.
[10] Z. K. Peng, M. R. Jackson, J. A. Rongong, F. L. Chu, and R. M. Parkin, On the energy leakage of discrete wavelet transform, Mechanical Systems and Signal Processing, 23(2) (2009) 330–343.
[11] J. Antonino-Daviu, P. Jover Rodriguez, M. Riera- Guasp, M. Pineda-Sánchez, and A. Arkkio, Detection of combined faults in induction machines with stator parallel branches through the DWT of the startup current, Mechanical Systems and Signal Processing, 23(7) 92009) 2336–2351.
[12] I. P. Georgakopoulos, E. D. Mitronikas, and A. N. Safacas, Condition monitoring of an inverter-driven induction motor using wavelets, 8th International Symposium on Advanced Electromechanical Motion Systems and Electric Drives (2009) 1–5.
[13] J. Cusid-Cusido, L. Romeral, J. A. Ortega, J. A. Rosero, and A. GarciaGarcia Espinosa, Fault detection in induction machines using power spectral density in wavelet decomposition, IEEE Transactions on Industrial Electronics, 55(2), (2008) 633–643.
[14] R. Supangat, N. Ertugrul, W. L. Soong, D. A. Gray, C. Hansen, and J. Grieger, Broken rotor bar fault detection in induction motors using starting current analysis, European Conference on Power Electronics and Applications, (2005) 10.
[15] M. Riera-Guasp, J. A. Antonino-Daviu, M. Pineda- Sanchez, R. Puche-Panadero, and J. Perez-Cruz, A general approach for the transient detection of slip-dependent fault components based on the discrete wavelet transform, IEEE Transactions on Industrial Electronics, 55(12) (2008) 4167–4180.
[16] J. Faiz, B. M. Ebrahimi, B. Akin, and B. Asaie, Criterion function for broken-bar fault diagnosis in induction motor under load variation using wavelet transform, International Journal of Electromagnetics, Taylor&Francis, 29(3) (2009) 220–234.
[17] O. A. Mohammed, N. Y. Abed, and S. Ganu, Modeling and characterization of induction motor internal faults using finite element and discrete wavelet transforms, IEEE Electric Ship Technologies Symposium, (2007) 250–253.
[18] J. A. Antonino-Daviu, M. Riera-Guasp, J. R. Folch, and M. P. M. Palomares, Validation of a new method for the diagnosis of rotor bar failures via wavelet transform in industrial induction machines, IEEE Transactions on Industry applications, 42(4) (2006) 990–996.
[19] H. Douglas, P. Pillay, and A. K. Ziarani, Broken rotor bar detection in induction machines with transient operating speeds, IEEE Transactions on Energy Conversion, 20(1) (2005) 135–141.
[20] Zhengping Zhang, Zhen Ren, and Wenying Huang, A novel detection method of motor broken rotor bars based on wavelet ridge, IEEE Transactions on Energy Conversion, 18(3) (2003) 417–423.
[21] S. A. Saleh, T. S. Radwan, and M. A. Rahman, Real-time testing of WPT-based protection of three-phase VS PWM inverter-fed motors, IEEE Transactions on Power Delivery, 22(4) (2007) 2108–2115.
[22] M. A. S. K. Khan, T. S. Radwan, and M. A. Rahman, Real-tme implementation of wavelet packet transform-based diagnosis and protection of three-phase induction motors, IEEE Transactions on Energy Conversion, 22(3) (2007) 647–655.
[23] Zhongming Ye, Bin Wu, and A. Sadeghian, Current signature analysis of induction motor mechanical faults by wavelet packet decomposition, IEEE Transactions on Industrial Electronics, 50(6) (2003) 1217–1228. [24] M. Abdesh, S. K. Khan, and M. Azizur Rahman, A new wavelet based diagnosis and protection of faults in induction motor drives, IEEE Power Electronics Specialists Conference, (2008) 1536–1541.
[25] F. Ponci, A. Monti, L. Cristaldi, and M. Lazzaroni, Diagnostic of a faulty induction motor drive via wavelet decomposition, IEEE Transactions on Instrum. Meas., 56(6) (2007) 2606–2615.
[26] P. Karvelis, G. Georgoulas, I. P. Tsoumas, J. A. Antonino-Daviu, V. Climente-Alarcan, and C. D. Stylios, A symbolic representation approach for the diagnosis of broken rotor bars in induction motors, IEEE Transactions on Industrial Informatics, 11(5) (2015) 1028–1037.
[27] J. A. Corral-Hernandez, J. Antonino-Daviu, J. Pons- Llinares, V. Climente-Alarcon, and V. Frances-Galiana, Transient-based rotor cage assessment in induction motors operating with soft starters, IEEE Transactions on Industry Applications, 51(5) (2015) 3734–3742. [28] M. Pineda-Sanchez, M. Riera-Guasp, J. A. Antonino-Daviu, J. Roger-Folch, J. Perez-Cruz, and R. Puche-Panadero, Diagnosis of induction motor faults in the fractional Fourier domain, IEEE Transactions on Instrum. Meas., 59(8) (2010) 2065–2075,.
[29] I. Tsoumas, E. Mitronikas, and A. Safacas, Induction motor mixed fault diagnosis based on wavelet analysis of the current space vector, International Conference on Electrical Machines and Systems, 3 (2005) 2186–2191.
[30] J. A. Antonino-Daviu, M. Riera-Guasp, M. Pineda- Sánchez, J. Pons-Llinares, R. Puche-Panadero, and J. Pérez-Cruz,
Feature extraction for the prognosis of electromechanical faults in electrical machines through the DWT, 2(2) (2009), 158–167.
[31] W. Su, F. Wang, H. Zhu, Z. Zhang, and Z. Guo, Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement, Mechanical Systems and Signal Processing, 24(5) (2010) 1458–1472.
[32] X. Wang, Y. Zi, and Z. He, Multiwavelet denoising with improved neighboring coefficients for applicationon rolling bearing fault diagnosis, Mechanical Systems and Signal Processing, 25(1) (2011) 285–304.
[33] I. Trendafilova, An automated procedure for detection and identification of ball bearing damage using multivariate statistics and pattern recognition, Mechanical Systems and Signal Processing, 24(6) (2010) 1858–1869.
[34] B. Akin, U. Orguner, H. A. Toliyat, and M. Rayner, Low order PWM inverter harmonics contributions to the inverter-fed induction machine fault diagnosis, IEEE Transactions on Industrial Electronics, 55(2) (2008) 610–619.
[35] M. J. Devaney and L. Eren, Detecting motor bearing faults, IEEE Instrum. Meas. Magazine,7(4) (2004) 30– 50.
[36] K. Teotrakool, M. J. Devaney, and L. Eren, Adjustable-speed drive bearing-fault detection via wavelet packet decomposition, IEEE Transactions on Instrum. Meas., 58(8) (2009) 2747–2754.
[37] L. Eren and M. J. Devaney, Bearing Damage Detection via Wavelet Packet Decomposition of the Stator Current, IEEE Transactions on Instrum. Meas., 53(2) (2004) 431–436.
[38] F. Immovilli, C. Bianchini, M. Cocconcelli, A. Bellini, and R. Rubini, Bearing fault model for induction motor with externally induced vibration, IEEE Transactions on Industrial Electronics, 60(8) (2013) 3408–3418.
[39] J. Faiz, V. Ghorbanian, and B. M. Ebrahimi, EMD-based analysis of industrial induction motors with broken rotor bars for identification of operating point at different supply modes, IEEE Transactions on Industrial Informatics, 10(2) (2014) 957–966.
[40] R. Puche-Panadero, M. Pineda-Sanchez, M. Riera-Guasp, J. Roger-Folch, E. Hurtado-Perez, and J. Perez-Cruz, Improved resolution of the MCSA method via Hilbert transform, enabling the diagnosis of rotor asymmetries at very low slip, IEEE Transactions on Energy Conversion, 24(1) (2009) 52–59.
[41] L. Sun, Detection of rotor bar breaking fault in induction motors based on Hilbert modulus gyration radius of filtered stator current signal, International Conference on Electrical Machines and Systems, (2008) 877–881.
[42] J. A. Antonino-Daviu, M. Riera-Guasp, M. Pineda- Sanchez, and R. B. Pérez, A critical comparison between DWT and Hilbert-Huang-based methods for the diagnosis of rotor bar failures in induction machines, IEEE Transactions on Industry Applications, 45(5) (2009) 1794–1803.
[43] G. A. Jiménez, A. O. Muñoz, and M. A. Duarte- Mermoud, Fault detection in induction motors using Hilbert and Wavelet transforms, Journal of Electrical Engineering, 89(3) (2007) 205–220.
[44] B. Trajin, M. Chabert, J. Regnier, and J. Faucher, Hilbert versus Concordia transform for three-phase machine stator current time-frequency monitoring, Mechanical Systems and Signal Processing, 23(8) (2009) 2648–2657.
[45] J. Antonino-daviu, P. J. Rodriguez, M. Riera-guasp, A. Arkkio, J. Roger-folch, and R. B. Pérez, Transient detection of eccentricity-related components in induction motors through the Hilbert – Huang Transform, International Journal of Energy Conversion and Management, 50(7) (2009) 1810–1820.
[46] Y. H. Kim, Y. W. Youn, D. H. Hwang, J. H. Sun, and D. S. Kang, High-resolution parameter estimation method to identify broken rotor bar faults in induction motors, IEEE Transactions on Industrial Electronics, 60(9) (2013) 4103–4117.
[47] B. Xu, L. Sun, L. Xu, and G. Xu, An ESPRIT-SAA-based detection method for broken rotor bar fault in induction motors, IEEE Transactions on Energy Conversion, 27(3) (2012) 654–660.
[48] B. Xu, S. Liu, and L. Sun, A novel method for the early detection of broken rotor bars in squirrel cage induction motors, International Conference on Electrical Machines and Systems, (2008) 751–754. [49] S. Hamdani, A. Bouzida, O. Touhami, and R. Ibtiouen, Diagnosis of rotor fault in induction motor using the MUSIC analysis of the terminal voltage after switch-off, 18th International Conference on Electrical Machines, (2008) 1–5.
[50] S. H. Kia, H. Henao, and G. a Capolino, A high-resolution frequency estimation method for three-phase induction machine fault detection, IEEE Transactions on Industrial Electronics, 54(4) (2007) 2305–2314.
[51] A. Garcia-Perez, R. de J. Romero-Troncoso, E. Cabal-Yepez, and R. A. Osornio-Rios, The application of high-resolution spectral analysis for identifying multiple combined faults in induction motors, IEEE Transactions on Industrial Electronics, 58(5) (2011) 2002–2010.
[52] F. Cupertino, E. De Vanna, L. Salvatore, and S. Stasi, Analysis techniques for detection of IM broken rotor bars after supply disconnection, IEEE Transactions on Industry Applications, 40(2) (2004) 526–533.
[53] B. Ayhan, H. J. Trussell, M. Y. Chow, and M. H. Song, On the use of a lower sampling rate for broken rotor bar detection with DTFT and AR-based spectrum methods, IEEE Transactions on Industrial Electronics, 55(3) (2008) 1421–1434.
[54] M. Blödt, D. Bonacci, J. Regnier, M. Chabert, and J. Faucher, On-line monitoring of mechanical faults in variable-speed induction motor drives using the Wigner distribution, IEEE Transactions on Industrial Electronics, 55(2) (2008) 522–533.
[55] V. Climente-Alarcon et al., Transient tracking of low and high-order eccentricity-related components in induction motors via TFD tools, Mechanical Systems and Signal Processing, 25(2) (2011) 667–679.