[1] M. Pineda-sanchez, J. Perez-cruz, J. Pons-llinares, V. Climente-alarcon, and J. A. Antonino-daviu, Application of the Teager – Kaiser energy operator to the fault diagnosis of induction motors, IEEE Transactions on Energy Conversion, 28(4) (2013) 1036–1044.
[2] R. Yan and R. Gao, 21 wavelet transform: A mathematical tool for non-stationary signal processing in measurement science part 2 - a series of tutorials in instrumentation, IEEE Magazine on Instrum. Meas. (2009) 35–44.
[3] J. Milimonfared, H. M. Kelk, S. Nandi, A. D. Minassians, and H. A. Toliyat, A novel approach for broken-rotor-bar detection in cage induction motors, IEEE Transactions on Industry Applications, 35(5) (1999) 1000–1006.
[4] R. Yan, R. X. Gao, and X. Chen, Wavelets for fault diagnosis of rotary machines: A review with applications, Signal Processing, Part A, 96 (2014) 1–15.
[5] M. E. H. Benbouzid, M. Vieira, and C. Theys, Induction motors’ faults detection and localization using stator current advanced signal processing techniques, IEEE Transactions on Power Electronics, 14(1) (1999) 14–22.
[6] J. Pons-Llinares, J. A. Antonino-Daviu, M. Riera-Guasp, M. Pineda-Sanchez, and V. Climente-Alarcon, Induction motor diagnosis based on a transient current analytic wavelet transform via frequency B-splines, IEEE Transactions on Industrial Electronics, 58(5) (2011) 1530–1544.
[7] D. J. T. Siyambalapitiya, P. G. McLaren, and P. P. Acarnley, A rotor condition monitor for squirrel-cage induction machines, IEEE Transactions on Industry Applications, 23(2) {1987) 334–340.
[8] C. Yang, T. J. Kang, D. Hyun, S. B. Lee, J. A. Antonino- Daviu, and J. Pons-Llinares, Reliable detection of induction motor rotor faults under the rotor axial air duct iInfluence, IEEE Energy Conversion Congress and Exposition, 50(4) (2013) 2508–2515.
[9] S. H. Kia and H. Henao, Diagnosis of broken-bar fault in induction machines using discrete wavelet transform without slip estimation, 45(4), (2009) 1395–1404.
[10] Z. K. Peng, M. R. Jackson, J. A. Rongong, F. L. Chu, and R. M. Parkin, On the energy leakage of discrete wavelet transform, Mechanical Systems and Signal Processing, 23(2) (2009) 330–343.
[11] J. Antonino-Daviu, P. Jover Rodriguez, M. Riera- Guasp, M. Pineda-Sánchez, and A. Arkkio, Detection of combined faults in induction machines with stator parallel branches through the DWT of the startup current, Mechanical Systems and Signal Processing, 23(7) 92009) 2336–2351.
[12] I. P. Georgakopoulos, E. D. Mitronikas, and A. N. Safacas, Condition monitoring of an inverter-driven induction motor using wavelets, 8th International Symposium on Advanced Electromechanical Motion Systems and Electric Drives (2009) 1–5.
[13] J. Cusid-Cusido, L. Romeral, J. A. Ortega, J. A. Rosero, and A. GarciaGarcia Espinosa, Fault detection in induction machines using power spectral density in wavelet decomposition, IEEE Transactions on Industrial Electronics, 55(2), (2008) 633–643.
[14] R. Supangat, N. Ertugrul, W. L. Soong, D. A. Gray, C. Hansen, and J. Grieger, Broken rotor bar fault detection in induction motors using starting current analysis, European Conference on Power Electronics and Applications, (2005) 10.
[15] M. Riera-Guasp, J. A. Antonino-Daviu, M. Pineda- Sanchez, R. Puche-Panadero, and J. Perez-Cruz, A general approach for the transient detection of slip-dependent fault components based on the discrete wavelet transform, IEEE Transactions on Industrial Electronics, 55(12) (2008) 4167–4180.
[16] J. Faiz, B. M. Ebrahimi, B. Akin, and B. Asaie, Criterion function for broken-bar fault diagnosis in induction motor under load variation using wavelet transform, International Journal of Electromagnetics, Taylor&Francis, 29(3) (2009) 220–234.
[17] O. A. Mohammed, N. Y. Abed, and S. Ganu, Modeling and characterization of induction motor internal faults using finite element and discrete wavelet transforms, IEEE Electric Ship Technologies Symposium, (2007) 250–253.
[18] J. A. Antonino-Daviu, M. Riera-Guasp, J. R. Folch, and M. P. M. Palomares, Validation of a new method for the diagnosis of rotor bar failures via wavelet transform in industrial induction machines, IEEE Transactions on Industry applications, 42(4) (2006) 990–996.
[19] H. Douglas, P. Pillay, and A. K. Ziarani, Broken rotor bar detection in induction machines with transient operating speeds, IEEE Transactions on Energy Conversion, 20(1) (2005) 135–141.
[20] Zhengping Zhang, Zhen Ren, and Wenying Huang, A novel detection method of motor broken rotor bars based on wavelet ridge, IEEE Transactions on Energy Conversion, 18(3) (2003) 417–423.
[21] S. A. Saleh, T. S. Radwan, and M. A. Rahman, Real-time testing of WPT-based protection of three-phase VS PWM inverter-fed motors, IEEE Transactions on Power Delivery, 22(4) (2007) 2108–2115.
[22] M. A. S. K. Khan, T. S. Radwan, and M. A. Rahman, Real-tme implementation of wavelet packet transform-based diagnosis and protection of three-phase induction motors, IEEE Transactions on Energy Conversion, 22(3) (2007) 647–655.
[23] Zhongming Ye, Bin Wu, and A. Sadeghian, Current signature analysis of induction motor mechanical faults by wavelet packet decomposition, IEEE Transactions on Industrial Electronics, 50(6) (2003) 1217–1228. [24] M. Abdesh, S. K. Khan, and M. Azizur Rahman, A new wavelet based diagnosis and protection of faults in induction motor drives, IEEE Power Electronics Specialists Conference, (2008) 1536–1541.
[25] F. Ponci, A. Monti, L. Cristaldi, and M. Lazzaroni, Diagnostic of a faulty induction motor drive via wavelet decomposition, IEEE Transactions on Instrum. Meas., 56(6) (2007) 2606–2615.
[26] P. Karvelis, G. Georgoulas, I. P. Tsoumas, J. A. Antonino-Daviu, V. Climente-Alarcan, and C. D. Stylios, A symbolic representation approach for the diagnosis of broken rotor bars in induction motors, IEEE Transactions on Industrial Informatics, 11(5) (2015) 1028–1037.
[27] J. A. Corral-Hernandez, J. Antonino-Daviu, J. Pons- Llinares, V. Climente-Alarcon, and V. Frances-Galiana, Transient-based rotor cage assessment in induction motors operating with soft starters, IEEE Transactions on Industry Applications, 51(5) (2015) 3734–3742. [28] M. Pineda-Sanchez, M. Riera-Guasp, J. A. Antonino-Daviu, J. Roger-Folch, J. Perez-Cruz, and R. Puche-Panadero, Diagnosis of induction motor faults in the fractional Fourier domain, IEEE Transactions on Instrum. Meas., 59(8) (2010) 2065–2075,.
[29] I. Tsoumas, E. Mitronikas, and A. Safacas, Induction motor mixed fault diagnosis based on wavelet analysis of the current space vector, International Conference on Electrical Machines and Systems, 3 (2005) 2186–2191.
[30] J. A. Antonino-Daviu, M. Riera-Guasp, M. Pineda- Sánchez, J. Pons-Llinares, R. Puche-Panadero, and J. Pérez-Cruz,
Feature extraction for the prognosis of electromechanical faults in electrical machines through the DWT, 2(2) (2009), 158–167.
[31] W. Su, F. Wang, H. Zhu, Z. Zhang, and Z. Guo, Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement, Mechanical Systems and Signal Processing, 24(5) (2010) 1458–1472.
[32] X. Wang, Y. Zi, and Z. He, Multiwavelet denoising with improved neighboring coefficients for applicationon rolling bearing fault diagnosis, Mechanical Systems and Signal Processing, 25(1) (2011) 285–304.
[33] I. Trendafilova, An automated procedure for detection and identification of ball bearing damage using multivariate statistics and pattern recognition, Mechanical Systems and Signal Processing, 24(6) (2010) 1858–1869.
[34] B. Akin, U. Orguner, H. A. Toliyat, and M. Rayner, Low order PWM inverter harmonics contributions to the inverter-fed induction machine fault diagnosis, IEEE Transactions on Industrial Electronics, 55(2) (2008) 610–619.
[35] M. J. Devaney and L. Eren, Detecting motor bearing faults, IEEE Instrum. Meas. Magazine,7(4) (2004) 30– 50.
[36] K. Teotrakool, M. J. Devaney, and L. Eren, Adjustable-speed drive bearing-fault detection via wavelet packet decomposition, IEEE Transactions on Instrum. Meas., 58(8) (2009) 2747–2754.
[37] L. Eren and M. J. Devaney, Bearing Damage Detection via Wavelet Packet Decomposition of the Stator Current, IEEE Transactions on Instrum. Meas., 53(2) (2004) 431–436.
[38] F. Immovilli, C. Bianchini, M. Cocconcelli, A. Bellini, and R. Rubini, Bearing fault model for induction motor with externally induced vibration, IEEE Transactions on Industrial Electronics, 60(8) (2013) 3408–3418.
[39] J. Faiz, V. Ghorbanian, and B. M. Ebrahimi, EMD-based analysis of industrial induction motors with broken rotor bars for identification of operating point at different supply modes, IEEE Transactions on Industrial Informatics, 10(2) (2014) 957–966.
[40] R. Puche-Panadero, M. Pineda-Sanchez, M. Riera-Guasp, J. Roger-Folch, E. Hurtado-Perez, and J. Perez-Cruz, Improved resolution of the MCSA method via Hilbert transform, enabling the diagnosis of rotor asymmetries at very low slip, IEEE Transactions on Energy Conversion, 24(1) (2009) 52–59.
[41] L. Sun, Detection of rotor bar breaking fault in induction motors based on Hilbert modulus gyration radius of filtered stator current signal, International Conference on Electrical Machines and Systems, (2008) 877–881.
[42] J. A. Antonino-Daviu, M. Riera-Guasp, M. Pineda- Sanchez, and R. B. Pérez, A critical comparison between DWT and Hilbert-Huang-based methods for the diagnosis of rotor bar failures in induction machines, IEEE Transactions on Industry Applications, 45(5) (2009) 1794–1803.
[43] G. A. Jiménez, A. O. Muñoz, and M. A. Duarte- Mermoud, Fault detection in induction motors using Hilbert and Wavelet transforms, Journal of Electrical Engineering, 89(3) (2007) 205–220.
[44] B. Trajin, M. Chabert, J. Regnier, and J. Faucher, Hilbert versus Concordia transform for three-phase machine stator current time-frequency monitoring, Mechanical Systems and Signal Processing, 23(8) (2009) 2648–2657.
[45] J. Antonino-daviu, P. J. Rodriguez, M. Riera-guasp, A. Arkkio, J. Roger-folch, and R. B. Pérez, Transient detection of eccentricity-related components in induction motors through the Hilbert – Huang Transform, International Journal of Energy Conversion and Management, 50(7) (2009) 1810–1820.
[46] Y. H. Kim, Y. W. Youn, D. H. Hwang, J. H. Sun, and D. S. Kang, High-resolution parameter estimation method to identify broken rotor bar faults in induction motors, IEEE Transactions on Industrial Electronics, 60(9) (2013) 4103–4117.
[47] B. Xu, L. Sun, L. Xu, and G. Xu, An ESPRIT-SAA-based detection method for broken rotor bar fault in induction motors, IEEE Transactions on Energy Conversion, 27(3) (2012) 654–660.
[48] B. Xu, S. Liu, and L. Sun, A novel method for the early detection of broken rotor bars in squirrel cage induction motors, International Conference on Electrical Machines and Systems, (2008) 751–754. [49] S. Hamdani, A. Bouzida, O. Touhami, and R. Ibtiouen, Diagnosis of rotor fault in induction motor using the MUSIC analysis of the terminal voltage after switch-off, 18th International Conference on Electrical Machines, (2008) 1–5.
[50] S. H. Kia, H. Henao, and G. a Capolino, A high-resolution frequency estimation method for three-phase induction machine fault detection, IEEE Transactions on Industrial Electronics, 54(4) (2007) 2305–2314.
[51] A. Garcia-Perez, R. de J. Romero-Troncoso, E. Cabal-Yepez, and R. A. Osornio-Rios, The application of high-resolution spectral analysis for identifying multiple combined faults in induction motors, IEEE Transactions on Industrial Electronics, 58(5) (2011) 2002–2010.
[52] F. Cupertino, E. De Vanna, L. Salvatore, and S. Stasi, Analysis techniques for detection of IM broken rotor bars after supply disconnection, IEEE Transactions on Industry Applications, 40(2) (2004) 526–533.
[53] B. Ayhan, H. J. Trussell, M. Y. Chow, and M. H. Song, On the use of a lower sampling rate for broken rotor bar detection with DTFT and AR-based spectrum methods, IEEE Transactions on Industrial Electronics, 55(3) (2008) 1421–1434.
[54] M. Blödt, D. Bonacci, J. Regnier, M. Chabert, and J. Faucher, On-line monitoring of mechanical faults in variable-speed induction motor drives using the Wigner distribution, IEEE Transactions on Industrial Electronics, 55(2) (2008) 522–533.
[55] V. Climente-Alarcon et al., Transient tracking of low and high-order eccentricity-related components in induction motors via TFD tools, Mechanical Systems and Signal Processing, 25(2) (2011) 667–679.