[1] J. Faiz, B.M. Ebrahimi, M.B.B. Sharifian, Different Faults and Their Diagnosis Techniques in Three-Phase Squirrel- Cage Induction Motors—A Review, Electromagnetics, 26 (2006) 543-569.
[2] S. Nandi, H.A. Toliyat, X. Li, Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review, IEEE Transactions on Energy Conversion, 20(4) (2005) 719-729.
[3] X. Ying, Characteristic Performance Analysis of Squirrel Cage Induction Motor With Broken Bars, IEEE Transactions on Magnetics, 45 (2009) 759-766.
[4] J. Faiz, B.-M. Ebrahimi, A New Pattern for Detecting Broken Rotor Bars in Induction Motors During Start-Up, IEEE Transactions on Magnetics, 44 (2008) 4673-4683.
[5] J. Faiz, B.M. Ebrahimi, Determination of Number of Broken Rotor Bars and Static Eccentricity Degree in Induction Motor under Mixed Fault, Electromagnetics, 28 (2008) 433-449.
[6] J. Faiz, B.M. Ebrahimi, B. Akin, H.A. Toliyat, Comprehensive Eccentricity Fault Diagnosis in Induction Motors Using Finite Element Method, IEEE Transactions on Magnetics, 45 (2009) 1764-1767.
[7] M. Drif, A.J.M. Cardoso, Airgap-Eccentricity Fault Diagnosis, in Three-Phase Induction Motors, by the Complex Apparent Power Signature Analysis, IEEE Transactions on Industrial Electronics, 55 (2008) 1404- 1410.
[8] X. Huang, T.G. Habetler, R.G. Harley, E.J. Wiedenbrug, Using a Surge Tester to Detect Rotor Eccentricity Faults in Induction Motors, IEEE Transactions on Industry Applications, 43 (2007) 1183-1190.
[9] D.G. Dorrell, W.T. Thomson, S. Roach, Analysis of airgap flux, current, and vibration signals as a function of the combination of static and dynamic airgap eccentricity in 3-phase induction motors, IEEE Transactions on Industry Applications, 33 (1997) 24-34.
[10] J. Faiz, M. Ojaghi, Instantaneous-Power Harmonics as Indexes for Mixed Eccentricity Fault in Mains-Fed and Open/Closed-Loop Drive-Connected Squirrel-Cage Induction Motors, IEEE Transactions on Industrial Electronics, 56 (2009) 4718-4726.
[11] S. Nandi, R.M. Bharadwaj, H.A. Toliyat, Performance analysis of a three-phase induction motor under mixed eccentricity condition, IEEE Transactions on Energy Conversion, 17 (2002) 392-399.
[12] J. Faiz, B.M. Ebrahimi, B. Akin, H.A. Toliyat, Finite- Element Transient Analysis of Induction Motors Under Mixed Eccentricity Fault, IEEE Transactions on Magnetics, 44 (2008) 66-74.
[13] M. Blodt, P. Granjon, B. Raison, G. Rostaing, Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring, IEEE Transactions on Industrial Electronics, 55 (2008) 1813-1822.
[14] L. Frosini, E. Bassi, Stator Current and Motor Efficiency as Indicators for Different Types of Bearing Faults in Induction Motors, IEEE Transactions on Industrial Electronics, 57 (2010) 244-251.
[15] I.Y. Önel, M.E.H. Benbouzid, Induction Motor Bearing Failure Detection and Diagnosis: Park and Concordia Transform Approaches Comparative Study, IEEE/ASME Transactions on Mechatronics, 13 (2008) 257-262.
[16] M.J. Devaney, L. Eren, Detecting motor bearing faults, IEEE Instrumentation and Measurement Magazine, 7 (2004) 30-50.
[17] L. Eren, M.J. Devaney, Bearing Damage Detection via Wavelet Packet Decomposition of the Stator Current, IEEE Transactions on Instrumentation and Measurement, 53 (2004) 431-436.
[18] B. Mirafzal, N.A.O. Demerdash, On innovative methods of induction motor interturn and broken-bar fault diagnostics, IEEE Transactions on Industry Applications, 42 (2006) 405-414.
[19] J. Faiz, I. Tabatabaei, Extension of winding function theory for nonuniform air gap in electric machinery, IEEE Transactions on Magnetics, 38 (2002) 3654-3657.
[20] Z. Liu, X. Yin, Z. Zhang, D. Chen, W. Chen, Online Rotor Mixed Fault Diagnosis Way Based on Spectrum Analysis of Instantaneous Power in Squirrel Cage Induction Motors, IEEE Transactions on Energy Conversion, 19 (2004) 485-490.
[21] M.S. Ballal, Z.J. Khan, H.M. Suryawanshi, R.L. Sonolikar, Adaptive Neural Fuzzy Inference System for the Detection of Inter-Turn Insulation and Bearing Wear Faults in Induction Motor, IEEE Transactions on Industrial Electronics, 54 (2007) 250-258.
[22] S. Shin, J. Kim, S.B. Lee, C. Lim, E.J. Wiedenbrug, Evaluation of the Influence of Rotor Magnetic Anisotropy on Condition Monitoring of Two-Pole Induction Motors, IEEE Transactions on Industry Applications, 51 (2015) 2896-2904.
[23] A. Sadeghian, Z. Ye, B. Wu, Online Detection of Broken Rotor Bars in Induction Motors by Wavelet Packet Decomposition and Artificial Neural Networks, IEEE Transactions on Instrumentation and Measurement, 58 (2009) 2253-2263.
[24] J.F. Bangura, R.J. Povinelli, N.A.O. Demerdash, R.H. Brown, Diagnostics of eccentricities and bar/end-ring connector breakages in polyphase induction motors through a combination of time-series data mining and time-stepping coupled fe~state-space techniques, IEEE Transactions on Industry Applications, 39 (2003) 1005-1013.
[25] S.H. Kia, H. Henao, G.-A. Capolino, Diagnosis of Broken- Bar Fault in Induction Machines Using Discrete Wavelet Transform Without Slip Estimation, IEEE Transactions on Industry Applications, 45 (2009) 1395-1404.
[26] M.E.H. Benbouzid, G.B. Kliman, What stator current processing-based technique to use for induction motor rotor faults diagnosis?, IEEE Transactions on Energy Conversion, 18 (2003) 238-244.
[27] P.J. Rodriguez, A. Belahcen, A. Arkkio, Signatures of electrical faults in the force distribution and vibration pattern of induction motors, IEE Proceedings - Electric Power Applications, 153 (2006) 523.
[28] C.-C. Yeh, G.Y. Sizov, A. Sayed-Ahmed, N.A.O. Demerdash, R.J. Povinelli, E.E. Yaz, D.M. Ionel, A Reconfigurable Motor for Experimental Emulation of Stator Winding Interturn and Broken Bar Faults in Polyphase Induction Machines, IEEE Transactions on Energy Conversion, 23 (2008) 1005-1014.
[29] B. Mirafzal, N.A.O. Demerdash, Effects of Load Magnitude on Diagnosing Broken Bar Faults in Induction Motors Using the Pendulous Oscillation of the Rotor Magnetic Field Orientation, IEEE Transactions on Industry Applications, 41 (2005) 771-783.
[30] G. Didier, E. Ternisien, O. Caspary, H. Razik, Fault detection of broken rotor bars in induction motor using a global fault index, IEEE Transactions on Industry Applications, 42 (2006) 79-88.
[31] J. Milimonfared, H.M. Kelk, S. Nandi, A.D. Minassians, H.A. Toliyat, A novel approach for broken-rotor-bar detection in cage induction motors, IEEE Transactions on Industry Applications, 35 (1999) 1000-1006.
[32] A.M. da Silva, R.J. Povinelli, N.A.O. Demerdash, Induction Machine Broken Bar and Stator Short-Circuit Fault Diagnostics Based on Three-Phase Stator Current Envelopes, IEEE Transactions on Industrial Electronics, 55 (2008) 1310-1318.
[33] C.-E. Kim, Y.-B. Jung, S.-B. Yoon, D.-H. Im, The fault diagnosis of rotor bars in squirrel cage induction motors by time-stepping finite element method, IEEE Transactions on Magnetics, 33 (1997) 2131-2134.
[34] M. Haji, H.A. Toliyat, Pattern recognition-a technique for induction machines rotor broken bar detection, IEEE Transactions on Energy Conversion, 16 (2001) 312-317.
[35] R. Puche-Panadero, M. Pineda-Sanchez, M. Riera- Guasp, J. Roger-Folch, E. Hurtado-Perez, J. Perez- Cruz, Improved Resolution of the MCSA Method Via Hilbert Transform, Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip, IEEE Transactions on Energy Conversion, 24 (2009) 52-59.
[36] J.F. Bangura, N.A. Demerdash, Diagnosis and characterization of effects of broken bars and connectors in squirrel-cage induction motors by a time-stepping coupled finite element-state space modeling approach, IEEE Transactions on Energy Conversion, 14 (1999) 1167-1176.
[37] A. Bellini, F. Filippetti, G. Franceschini, C. Tassoni, G.B. Kliman, Quantitative evaluation of induction motor broken bars by means of electrical signature analysis, IEEE Transactions on Industry Applications, 37 (2001) 1248-1255.
[38] R.F. Walliser, C.F. Landy, Determination of interbar current effects in the detection of broken rotor bars in squirrel cage induction motors, IEEE Transactions on Energy Conversion, 9 (1994) 152-158.
[39] J.F. Watson, D.G. Dorrell, The use of finite element methods to improve techniques for the early detection of faults in 3-phase induction motors, IEEE Transactions on Energy Conversion, 14 (1999) 655-660.
[40] P.V. Goode, M.-y. Chow, Using a neural/fuzzy system to extract heuristic knowledge of incipient faults in induction motors. Part I-Methodology, IEEE Transactions on Industrial Electronics, 42 (1995) 131-138.
[41] K. Gyftakis, J. Antonino-Daviu, R. Garcia-Hernandez, M. McCulloch, D. Howey, A. Cardoso, Comparative Experimental Investigation of the Broken Bar Fault Detectability in Induction Motors, IEEE Transactions on Industry Applications, 10 (2015) 1-1.
[42] M. Riera-Guasp, J. Pons-Llinares, F. Vedreño-Santos, J.A. Antonino-Daviu, M. Fernández Cabanas, Evaluation of the amplitudes of high-order fault related components in double bar faults, SDEMPED 2011 - 8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, (2011) 307-315.
[43] M. Riera-Guasp, M. Pineda-Sanchez, J. Perez-Cruz, R. Puche-Panadero, J. Roger-Folch, J.A. Antonino-Daviu, Diagnosis of induction motor faults via gabor analysis of the current in transient regime, IEEE Transactions on Instrumentation and Measurement, 61 (2012) 1583-1596.
[44] J. Faiz, B.M. Ebrahimi, M.B.B. Sharifian, TIME STEPPING FINITE ELEMENT ANALYSIS OF BROKEN BARS FAULT IN A THREE-PHASE SQUIRREL-CAGE INDUCTION MOTOR, Progress In Electromagnetics Research, 68 (2007) 53-70.
[45] J. Faiz, B.M. Ebrahimi, Locating rotor broken bars in induction motors using finite element method, Energy Conversion and Management, 50 (2009) 125-131.
[46] B. Akin, U. Orguner, H.A. Toliyat, M. Rayner, Low Order PWM Inverter Harmonics Contributions to the Inverter-Fed Induction Machine Fault Diagnosis, IEEE Transactions on Industrial Electronics, 55 (2008) 610-619.
[47] M.h. Drif, A.J.M. Cardoso, The Use of Instantaneous Phase-Angle Signature Analysis for Airgap Eccentricity Diagnosis in Three-Phase Induction Motors, in: 2007 International Conference on Power Engineering, Energy and Electrical Drives, IEEE, 2007, pp. 100-105.
[48] J. Faiz, I.T. Ardekanei, H.A. Toliyat, An evaluation of inductances of a squirrel-cage induction motor under mixed eccentric conditions, IEEE Transactions on Energy Conversion, 18 (2003) 252-258.
[49] W.T. Thomson, A. Barbour, On-line current monitoring and application of a finite element method to predict the level of static airgap eccentricity in three-phase induction motors, IEEE Transactions on Energy Conversion, 13 (1998) 347-357.
[50] J.F. Bangura, N.A. Demerdash, Effects of broken bars/ end-ring connectors and airgap eccentricities on ohmic and core losses of induction motors in ASDs using a coupled finite element-state space method, IEEE Transactions on Energy Conversion, 15 (2000) 40-47.
[51] S. Nandi, S. Ahmed, H.A. Toliyat, Detection of rotor slot and other eccentricity related harmonics in a three phase induction motor with different rotor cages, IEEE Transactions on Energy Conversion, 16 (2001) 253-260.
[52] X. Li, Q. Wu, S. Nandi, Performance Analysis of a Three-Phase Induction Machine With Inclined Static Eccentricity, IEEE Transactions on Industry Applications, 43 (2007) 531-541.
[53] A.M. Knight, S.P. Bertani, Mechanical Fault Detection in a Medium-Sized Induction Motor Using Stator Current Monitoring, IEEE Transactions on Energy Conversion, 20 (2005) 753-760.
[54] S. Nandi, T.C. Ilamparithi, S.B. Lee, D. Hyun, Detection of eccentricity faults in induction machines based on nameplate parameters, IEEE Transactions on Industrial Electronics, 58 (2011) 1673-1683.
[55] M. Ojaghi, Eccentricity fault diagnosis in three-phase induction motors under mains voltage and DTC drive supply modes, Ph. D. thesis, School of Electrical and Computer Engineering, Univ. Tehran, Tehran, Iran, (2009).
[56] W. Zhou, B. Lu, T.G. Habetler, R.G. Harley, Incipient Bearing Fault Detection via Motor Stator Current Noise Cancellation Using Wiener Filter, IEEE Transactions on Industry Applications, 45 (2009) 1309-1317.
[57] Y. Liu, L. Guo, Q. Wang, G. An, M. Guo, H. Lian, Application to induction motor faults diagnosis of the amplitude recovery method combined with FFT, Mechanical Systems and Signal Processing, 24 (2010) 2961-2971.
[58] M. Riera-Guasp, J.A. Antonino-Daviu, M. Pineda- Sanchez, R. Puche-Panadero, J. Perez-Cruz, A General Approach for the Transient Detection of Slip-Dependent Fault Components Based on the Discrete Wavelet Transform, IEEE Transactions on Industrial Electronics, 55 (2008) 4167-4180.
[59] M. Timusk, M. Lipsett, C.K. Mechefske, Fault detection using transient machine signals, Mechanical Systems and Signal Processing, 22 (2008) 1724-1749.
[60] A. Prudhom, J. Antonino-Daviu, H. Razik, V. Climente- Alarcon, Time-frequency vibration analysis for the detection of motor damages caused by bearing currents, Mechanical Systems and Signal Processing, (2015) 1-16.