Multiwalled Carbon Nanotube Photonic Crystals for Extreme-UV Photonics based on Comprehensive Dielectric Function Modeling

Document Type : Research Article

Authors

Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

Our latest study builds upon our previous research on multi-wall carbon nanotubes (MWCNTs) by exploring the photonic responses of regularly β-aligned arrays of these nanotubes. Through extensive calculations using the Finite Difference Time Domain Method, we determined that MWCNT-based photonic crystals possess significant Bragg reflections of up to 80% without experiencing substantial attenuation, even at wavelengths as low as 17 nm. This discovery is of great significance, as traditional materials have not been able to scatter UV photons within this frequency range efficiently. Following extensive research, we analyzed various model parameters such as lattice periodicity, inner and outer radii of MWCNTs, and the polarization (TM or TE) and direction (Γ-X or Γ-M) of the incident wave. Our findings present promising implications for advancing ultra-high-frequency photon manipulation in EUV applications, with potential developments ranging from UV laser mirrors to EUV lithography lenses, and beyond to UV spectroscopy collimators.

Keywords

Main Subjects


[1]    deHeer, Walt A., W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte. 1995. 'Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties', Science, https://doi.org/‎10.1126/science.268.5212.845.
[2]    Lin, M. F., F. L. Shyu, and R. B. Chen. 2000. 'Optical properties of well-aligned multiwalled carbon nanotube bundles', Physical Review B, http://link.aps.org/doi/10.1103/PhysRevB.61.14114.
[3]    Pan, Hui, Yuanping Feng, and Jianyi Lin. 2005. 'Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet', Physical Review B, http://link.aps.org/doi/10.1103/PhysRevB.72.085415.
[4]    Liu, Xuchun, Jinhai Si, Baohe Chang, Gang Xu, Qiguang Yang, Zhengwei Pan, Sishen Xie, Peixian Ye, Junhua Fan, and Meixiang Wan. 1999. 'Third-order optical nonlinearity of the carbon nanotubes', Applied Physics Letters, https://doi.org/‎10.1063/1.123282.
[5]    Maeda, A., S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, and H. Okamoto. 2005. 'Large Optical Nonlinearity of Semiconducting Single-Walled Carbon Nanotubes under Resonant Excitations', Physical Review Letters, http://link.aps.org/doi/10.1103/PhysRevLett.94.047404.
[6]    Misewich, J. A., R. Martel, Ph Avouris, J. C. Tsang, S. Heinze, and J. Tersoff. 2003. 'Electrically Induced Optical Emission from a Carbon Nanotube FET', Science, http://www.sciencemag.org/content/300/5620/783.abstract.
[7]    Kempa, K., B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren. 2002. 'Photonic Crystals Based on Periodic Arrays of Aligned Carbon Nanotubes', Nano Letters, https://doi.org/‎10.1021/nl0258271.
[8]    Lidorikis, Elefterios, and Andrea C. Ferrari. 2009. 'Photonics with Multiwall Carbon Nanotube Arrays', ACS Nano, https://doi.org/‎10.1021/nn900123a.
[9]    Rybczynski, J., K. Kempa, Y. Wang, Z. F. Ren, J. B. Carlson, B. R. Kimball, and G. Benham. 2006. 'Visible light diffraction studies on periodically aligned arrays of carbon nanotubes: Experimental and theoretical comparison', Applied Physics Letters, https://doi.org/‎10.1063/1.2205165.
[10]  Shamsollahi, Y., M. K. Moravvej-Farshi, and M. Ebnali-Heidari. 2013. 'Photonic Crystals Based on Periodic Arrays of MWCNTs: Modeling and Simulation', Lightwave Technology, Journal of, https://doi.org/‎10.1109/JLT.2013.2261952.
[11]  Ren, Z. F., Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio. 1998. 'Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass', Science, https://doi.org/‎10.1126/science.282.5391.1105.
[12]  Chhowalla, M., K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne. 2001. 'Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition', Journal of Applied Physics, https://doi.org/‎10.1063/1.1410322.
[13]  Teo, K. B. K., M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat. 2001. 'Uniform patterned growth of carbon nanotubes without surface carbon', Applied Physics Letters, https://doi.org/10.1063/1.1400085.
[14]  Lin, M. F. 2000. 'Optical spectra of single-wall carbon nanotube bundles', Physical Review B, http://link.aps.org/doi/10.1103/PhysRevB.62.13153.
[15]  Butt, Haider, Qing Dai, Timothy D. Wilkinson, and Gehan A. J. Amaratunga. 2012. 'Negative index photonic crystal lenses based on carbon nanotube arrays', Photonics and Nanostructures - Fundamentals and Applications, https://doi.org/10.1016/j.photonics.2012.04.003.
[16]  Butt, Haider, Qing Dai, Ranjith Rajesekharan, Timothy D. Wilkinson, and Gehan A. J. Amaratunga. 2011. 'Plasmonic Band Gaps and Waveguide Effects in Carbon Nanotube Arrays Based Metamaterials', ACS Nano, https://doi.org/‎10.1021/nn203363x.
[17]  Wang, Y., X. Wang, J. Rybczynski, D. Z. Wang, K. Kempa, and Z. F. Ren. 2005. 'Triangular lattice of carbon nanotube arrays for negative index of refraction and subwavelength lensing effect', Applied Physics Letters, https://doi.org/‎10.1063/1.1900941.
[18]  Bao, Hua, Xiulin Ruan, and Timothy S. Fisher. 2010. 'Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations', Opt. Express, http://www.opticsexpress.org/abstract.cfm?URI=oe-18-6-6347.
[19]  Lü, Wengang, Jinming Dong, and Zhen-Ya Li. 2000. 'Optical properties of aligned carbon nanotube systems studied by the effective-medium approximation method', Physical Review B, http://link.aps.org/doi/10.1103/PhysRevB.63.033401.
[20]  Henrard, L., and Lambin Ph. 1996. 'Calculation of the energy loss for an electron passing near giant fullerenes', Journal of Physics B: Atomic, Molecular and Optical Physics, http://stacks.iop.org/0953-4075/29/i=21/a=024.
[21]  Wang, L., A. Tikhonov, and S. A. Asher. 2012. 'Silica Crystalline Colloidal Array Deep Ultraviolet Narrow-band Diffraction Devices', Appl. Spectrosc., vol. 66, p. 426, 2012.
[22]  Corso, Alain J., and Maria G. Pelizzo. 2019. 'Extreme Ultraviolet Multilayer Nanostructures and Their Application to Solar Plasma Observations: A Review', Journal of Nanoscience and Nanotechnology, https://doi.org/‎10.1166/jnn.2019.16477.
[23]  Joannopoulos, J.D. 2008. Photonic crystals: molding the flow of light (Princeton University Press).
[24]  Spiller, Eberhard. 1990. "Soft-x-ray optics." In OSA Annual Meeting, TuB1. Optica Publishing Group.
[25]  Golub, L., M. Herant, K. Kalata, I. Lovas, G. Nystrom, F. Pardo, E. Spiller, and J. Wilczynski. 1990. 'Sub-arcsecond observations of the solar X-ray corona', Nature, https://doi.org/‎10.1038/344842a0.
[26]  Brown, C. M., U. Feldman, J. F. Seely, M. C. Richardson, H. Chen, J. H. Underwood, and A. Zigler. 1988. 'Imaging of laser-produced plasmas at 44 Å using a multilayer mirror', Optics Communications, https://doi.org/10.1016/0030-4018(88)90183-6.
[27]  Montcalm, C., P. A. Kearney, J. M. Slaughter, B. T. Sullivan, M. Chaker, H. Pépin, and C. M. Falco. 1996. 'Survey of Ti-, B-, and Y-based soft x-ray-extreme ultraviolet multilayer mirrors for the 2- to 12-nm wavelength region', Appl Opt, https://doi.org/‎10.1364/ao.35.005134.
[28]  Li, Yuping, Ruonan Li, Huimin bian, Huijun Hu, Kai Zhang, and Peide Han. 2020. 'Photonic crystal films with high reflectance based on mesoporous silica in the extreme ultraviolet range', Optics Communications, https://doi.org/10.1016/j.optcom.2020.126110.
[29]  Palik, E.D. 1991. Handbook of optical constants of solids II (Academic Press).
[30]  Djurisic, Aleksandra B., and E. Herbert Li. 1999. 'Optical properties of graphite', Journal of Applied Physics, https://doi.org/‎10.1063/1.369370.
[31]  Kuzmenko, A. B. 2005. 'Kramers–Kronig constrained variational analysis of optical spectra', Review of Scientific Instruments, https://doi.org/‎10.1063/1.1979470.
[32] Alexander Corletto, Joseph G. Shapter, 2007. 'Nanoscale Patterning of Carbon Nanotubes: Techniques, Applications, and Future', Nanotechnology, https://doi.org/10.1002/advs.202001778
[33] Stephen Y. Chou; Peter R. Krauss; Preston J. Renstrom, 1995. 'Imprint of Sub-25 nm Vias and Trenches in Polymers', Applied Physics Letters, https://doi.org/10.1063/1.114851
[34] M. J. Misner, 2003. 'Fabrication of Periodic Arrays of Metal Nanowires Using Interference Lithography and Electrodeposition', Nano Letters, 2003)
[35]  Taft, E. A., and H. R. Philipp. 1965. 'Optical Properties of Graphite', Physical Review, http://link.aps.org/doi/10.1103/PhysRev.138.A197.
[36]  Kuzmiak, V., A. A. Maradudin, and F. Pincemin. 1994. 'Photonic band structures of two-dimensional systems containing metallic components', Physical Review B, http://link.aps.org/doi/10.1103/PhysRevB.50.16835.
[37]  García-Vidal, F. J., J. M. Pitarke, and J. B. Pendry. 1997. 'Effective Medium Theory of the Optical Properties of Aligned Carbon Nanotubes', Physical Review Letters, http://link.aps.org/doi/10.1103/PhysRevLett.78.4289.
[38]         Wooten, F. 1972. Optical properties of solids (Academic Press).Appendix