[1] deHeer, Walt A., W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte. 1995. 'Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties', Science, https://doi.org/10.1126/science.268.5212.845.
[2] Lin, M. F., F. L. Shyu, and R. B. Chen. 2000. 'Optical properties of well-aligned multiwalled carbon nanotube bundles', Physical Review B, http://link.aps.org/doi/10.1103/PhysRevB.61.14114.
[3] Pan, Hui, Yuanping Feng, and Jianyi Lin. 2005. 'Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet', Physical Review B, http://link.aps.org/doi/10.1103/PhysRevB.72.085415.
[4] Liu, Xuchun, Jinhai Si, Baohe Chang, Gang Xu, Qiguang Yang, Zhengwei Pan, Sishen Xie, Peixian Ye, Junhua Fan, and Meixiang Wan. 1999. 'Third-order optical nonlinearity of the carbon nanotubes', Applied Physics Letters, https://doi.org/10.1063/1.123282.
[5] Maeda, A., S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, and H. Okamoto. 2005. 'Large Optical Nonlinearity of Semiconducting Single-Walled Carbon Nanotubes under Resonant Excitations', Physical Review Letters, http://link.aps.org/doi/10.1103/PhysRevLett.94.047404.
[6] Misewich, J. A., R. Martel, Ph Avouris, J. C. Tsang, S. Heinze, and J. Tersoff. 2003. 'Electrically Induced Optical Emission from a Carbon Nanotube FET', Science, http://www.sciencemag.org/content/300/5620/783.abstract.
[7] Kempa, K., B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren. 2002. 'Photonic Crystals Based on Periodic Arrays of Aligned Carbon Nanotubes', Nano Letters, https://doi.org/10.1021/nl0258271.
[8] Lidorikis, Elefterios, and Andrea C. Ferrari. 2009. 'Photonics with Multiwall Carbon Nanotube Arrays', ACS Nano, https://doi.org/10.1021/nn900123a.
[9] Rybczynski, J., K. Kempa, Y. Wang, Z. F. Ren, J. B. Carlson, B. R. Kimball, and G. Benham. 2006. 'Visible light diffraction studies on periodically aligned arrays of carbon nanotubes: Experimental and theoretical comparison', Applied Physics Letters, https://doi.org/10.1063/1.2205165.
[10] Shamsollahi, Y., M. K. Moravvej-Farshi, and M. Ebnali-Heidari. 2013. 'Photonic Crystals Based on Periodic Arrays of MWCNTs: Modeling and Simulation', Lightwave Technology, Journal of, https://doi.org/10.1109/JLT.2013.2261952.
[11] Ren, Z. F., Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio. 1998. 'Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass', Science, https://doi.org/10.1126/science.282.5391.1105.
[12] Chhowalla, M., K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne. 2001. 'Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition', Journal of Applied Physics, https://doi.org/10.1063/1.1410322.
[13] Teo, K. B. K., M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat. 2001. 'Uniform patterned growth of carbon nanotubes without surface carbon', Applied Physics Letters, https://doi.org/10.1063/1.1400085.
[14] Lin, M. F. 2000. 'Optical spectra of single-wall carbon nanotube bundles', Physical Review B, http://link.aps.org/doi/10.1103/PhysRevB.62.13153.
[15] Butt, Haider, Qing Dai, Timothy D. Wilkinson, and Gehan A. J. Amaratunga. 2012. 'Negative index photonic crystal lenses based on carbon nanotube arrays', Photonics and Nanostructures - Fundamentals and Applications, https://doi.org/10.1016/j.photonics.2012.04.003.
[16] Butt, Haider, Qing Dai, Ranjith Rajesekharan, Timothy D. Wilkinson, and Gehan A. J. Amaratunga. 2011. 'Plasmonic Band Gaps and Waveguide Effects in Carbon Nanotube Arrays Based Metamaterials', ACS Nano, https://doi.org/10.1021/nn203363x.
[17] Wang, Y., X. Wang, J. Rybczynski, D. Z. Wang, K. Kempa, and Z. F. Ren. 2005. 'Triangular lattice of carbon nanotube arrays for negative index of refraction and subwavelength lensing effect', Applied Physics Letters, https://doi.org/10.1063/1.1900941.
[18] Bao, Hua, Xiulin Ruan, and Timothy S. Fisher. 2010. 'Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations', Opt. Express, http://www.opticsexpress.org/abstract.cfm?URI=oe-18-6-6347.
[19] Lü, Wengang, Jinming Dong, and Zhen-Ya Li. 2000. 'Optical properties of aligned carbon nanotube systems studied by the effective-medium approximation method', Physical Review B, http://link.aps.org/doi/10.1103/PhysRevB.63.033401.
[20] Henrard, L., and Lambin Ph. 1996. 'Calculation of the energy loss for an electron passing near giant fullerenes', Journal of Physics B: Atomic, Molecular and Optical Physics, http://stacks.iop.org/0953-4075/29/i=21/a=024.
[21] Wang, L., A. Tikhonov, and S. A. Asher. 2012. 'Silica Crystalline Colloidal Array Deep Ultraviolet Narrow-band Diffraction Devices', Appl. Spectrosc., vol. 66, p. 426, 2012.
[22] Corso, Alain J., and Maria G. Pelizzo. 2019. 'Extreme Ultraviolet Multilayer Nanostructures and Their Application to Solar Plasma Observations: A Review', Journal of Nanoscience and Nanotechnology, https://doi.org/10.1166/jnn.2019.16477.
[23] Joannopoulos, J.D. 2008. Photonic crystals: molding the flow of light (Princeton University Press).
[24] Spiller, Eberhard. 1990. "Soft-x-ray optics." In OSA Annual Meeting, TuB1. Optica Publishing Group.
[25] Golub, L., M. Herant, K. Kalata, I. Lovas, G. Nystrom, F. Pardo, E. Spiller, and J. Wilczynski. 1990. 'Sub-arcsecond observations of the solar X-ray corona', Nature, https://doi.org/10.1038/344842a0.
[26] Brown, C. M., U. Feldman, J. F. Seely, M. C. Richardson, H. Chen, J. H. Underwood, and A. Zigler. 1988. 'Imaging of laser-produced plasmas at 44 Å using a multilayer mirror', Optics Communications, https://doi.org/10.1016/0030-4018(88)90183-6.
[27] Montcalm, C., P. A. Kearney, J. M. Slaughter, B. T. Sullivan, M. Chaker, H. Pépin, and C. M. Falco. 1996. 'Survey of Ti-, B-, and Y-based soft x-ray-extreme ultraviolet multilayer mirrors for the 2- to 12-nm wavelength region', Appl Opt, https://doi.org/10.1364/ao.35.005134.
[28] Li, Yuping, Ruonan Li, Huimin bian, Huijun Hu, Kai Zhang, and Peide Han. 2020. 'Photonic crystal films with high reflectance based on mesoporous silica in the extreme ultraviolet range', Optics Communications, https://doi.org/10.1016/j.optcom.2020.126110.
[29] Palik, E.D. 1991. Handbook of optical constants of solids II (Academic Press).
[30] Djurisic, Aleksandra B., and E. Herbert Li. 1999. 'Optical properties of graphite', Journal of Applied Physics, https://doi.org/10.1063/1.369370.
[31] Kuzmenko, A. B. 2005. 'Kramers–Kronig constrained variational analysis of optical spectra', Review of Scientific Instruments, https://doi.org/10.1063/1.1979470.
[33] Stephen Y. Chou; Peter R. Krauss; Preston J. Renstrom, 1995. 'Imprint of Sub-25 nm Vias and Trenches in Polymers', Applied Physics Letters,
https://doi.org/10.1063/1.114851
[34] M. J. Misner, 2003. 'Fabrication of Periodic Arrays of Metal Nanowires Using Interference Lithography and Electrodeposition', Nano Letters, 2003)
[35] Taft, E. A., and H. R. Philipp. 1965. 'Optical Properties of Graphite', Physical Review, http://link.aps.org/doi/10.1103/PhysRev.138.A197.
[36] Kuzmiak, V., A. A. Maradudin, and F. Pincemin. 1994. 'Photonic band structures of two-dimensional systems containing metallic components', Physical Review B, http://link.aps.org/doi/10.1103/PhysRevB.50.16835.
[37] García-Vidal, F. J., J. M. Pitarke, and J. B. Pendry. 1997. 'Effective Medium Theory of the Optical Properties of Aligned Carbon Nanotubes', Physical Review Letters, http://link.aps.org/doi/10.1103/PhysRevLett.78.4289.
[38] Wooten, F. 1972. Optical properties of solids (Academic Press).Appendix