[1] A. Ng, M. Jordan, On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes, Advances in neural information processing systems, 14 (2001).
[2] T. Jebara, Machine learning: discriminative and generative, Springer Science & Business Media, 2012.
[3] C.M. Bishop, N.M. Nasrabadi, Pattern recognition and machine learning, Springer, 2006.
[4] D. Berrar, Bayes’ theorem and naive Bayes classifier, Encyclopedia of bioinformatics and computational biology: ABC of bioinformatics, 403 (2018) 412.
[5] S. Dreiseitl, L. Ohno-Machado, Logistic regression and artificial neural network classification models: a methodology review, Journal of biomedical informatics, 35(5-6) (2002) 352-359.
[6] D.W. Hosmer Jr, S. Lemeshow, R.X. Sturdivant, Applied logistic regression, John Wiley & Sons, 2013.
[7] C. Cortes, V. Vapnik, Support-vector networks, Machine learning, 20 (1995) 273-297.
[8] Z. Akram-Ali-Hammouri, M. Fernández-Delgado, E. Cernadas, S. Barro, Fast support vector classification for large-scale problems, IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(10) (2021) 6184-6195.
[9] A. Ghods, D.J. Cook, A survey of deep network techniques all classifiers can adopt, Data mining and knowledge discovery, 35 (2021) 46-87.
[10] Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou, A survey of convolutional neural networks: analysis, applications, and prospects, IEEE transactions on neural networks and learning systems, (2021).
[11] Z. He, Z. Wu, G. Xu, Y. Liu, Q. Zou, Decision tree for Sequences, IEEE transactions on Knowledge and Data Engineering, (2021).
[12] S. Tsang, B. Kao, K.Y. Yip, W.-S. Ho, S.D. Lee, Decision trees for uncertain data, IEEE transactions on knowledge and data engineering, 23(1) (2009) 64-78.
[13] Z. Yu, H. Chen, J. Liu, J. You, H. Leung, G. Han, Hybrid $ k $-nearest neighbor classifier, IEEE transactions on cybernetics, 46(6) (2015) 1263-1275.
[14] T. Liao, Z. Lei, T. Zhu, S. Zeng, Y. Li, C. Yuan, Deep metric learning for k nearest neighbor classification, IEEE Transactions on Knowledge and Data Engineering, 35(1) (2021) 264-275.
[15] M. Bansal, A. Goyal, A. Choudhary, A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision tree, and long short term memory algorithms in machine learning, Decision Analytics Journal, 3 (2022) 100071.
[16] D.E. Goldberg, Genetic algorithms, pearson education India, 2013.
[17] S. Katoch, S.S. Chauhan, V. Kumar, A review on genetic algorithm: past, present, and future, Multimedia tools and applications, 80 (2021) 8091-8126.
[18] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE computational intelligence magazine, 1(4) (2006) 28-39.
[19] Y. Liu, B. Cao, A novel ant colony optimization algorithm with Levy flight, Ieee Access, 8 (2020) 67205-67213.
[20] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN'95-international conference on neural networks, IEEE, 1995, pp. 1942-1948.
[21] X. Xia, L. Gui, F. Yu, H. Wu, B. Wei, Y.-L. Zhang, Z.-H. Zhan, Triple archives particle swarm optimization, IEEE transactions on cybernetics, 50(12) (2019) 4862-4875.
[22] J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the national academy of sciences, 79(8) (1982) 2554-2558.
[23] S. Hochreiter, M.C. Mozer, K. Obermayer, Coulomb classifiers: Generalizing support vector machines via an analogy to electrostatic systems, Advances in neural information processing systems, 15 (2002).
[24] D. Ruta, B. Gabrys, A framework for machine learning based on dynamic physical fields, Natural Computing, 8 (2009) 219-237.
[25] M. Budka, B. Gabrys, Electrostatic field framework for supervised and semi-supervised learning from incomplete data, Natural Computing, 10 (2011) 921-945.
[26] L. Peng, B. Yang, Y. Chen, A. Abraham, Data gravitation based classification, Information Sciences, 179(6) (2009) 809-819.
[27] P. Shafigh, S.Y. Hadi, E. Sohrab, Gravitation based classification, Information Sciences, 220 (2013) 319-330.
[28] L. Peng, H. Zhang, H. Zhang, B. Yang, A fast feature weighting algorithm of data gravitation classification, Information Sciences, 375 (2017) 54-78.
[29] A. Cano, A. Zafra, S. Ventura, Weighted data gravitation classification for standard and imbalanced data, IEEE transactions on cybernetics, 43(6) (2013) 1672-1687.