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ABSTRACT: Concepts and laws of physics have been a valuable source of inspiration for engineers to 
overcome human challenges and problems. Classification is an important example of such problems that 
play a major role in various fields of engineering sciences. It is shown that discriminative classifiers tend 
to outperform their generative counterparts, especially in the presence of sufficient labeled training data. 
In this paper, we present a new physics-inspired discriminative classification method using minimum 
potential lines.  To do this, we first consider two groups of fixed point charges (as two classes of data) 
and a movable classifier line between them. Then, we find a stable position for the classifier line by 
minimizing the total potential integral on the classifier line due to the two groups of point charges. 
Surprisingly, it will be shown that the obtained classifier is actually an uncertainty-based classifier that 
minimizes the total uncertainty of the classifier line. Experimental results show the effectiveness of the 
proposed approach. 
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1- Introduction
Data classification as a supervised machine learning 

process involves building a classifier using a set of labeled 
data samples to predict the labels of new samples. Due to 
the many applications of the classification task in various and 
distinct fields, this problem has been heavily researched and 
many different classification methods have been developed 
that can be broadly classified into two main groups: generative 
and discriminative models [1-3]. In generative models (such 
as naive Bayes classifiers [1, 3, 4] and hidden Markov 
models [3]), classifying samples is the result of estimating a 
probability distribution for each class and using Bayes’ rule 
to infer class labels. In contrast, in discriminative models, 
classifying samples results from directly learning a mapping 
from samples to class labels. Therefore, in discriminative 
models, the focus is on decision boundaries, and in generative 
models is on the data generation process (Fig. 1.). Logistic 
regression [5, 6], support vector machines (SVM) [7, 8], 
neural networks [9, 10], decision trees [11, 12], and k-nearest 
neighbor (KNN) classifiers [13-15] are some examples 
of widely used discriminative models. Discriminative 
classifiers often achieve better performance than generative 
ones, especially in the presence of sufficient labeled training 
data. When the labeled training data size is small, generative 
classifiers can outperform them, provided that appropriate 

models are chosen for the data [1, 3].
Nature has always been a valuable source of inspiration 

for engineers to overcome human challenges and problems, 
which has led to amazing results in various fields of 
engineering sciences. Optimization is one of the most widely 
used fields in which many nature-inspired algorithms have 
gained popularity due to their high efficiency. A number of 
good instances are genetic algorithm [16, 17], ant colony 
optimization [18, 19], and particle swarm optimization [20, 
21]. 

Machine learning and nature also have long-standing 
strong links. For example, one such important link was 
created with the emergence of artificial neural networks [22]. 
Another such link is physics-inspired classification algorithms 
such as Coulomb classifiers [23], electrostatic field classifiers 
[24, 25], and gravitation-based classifiers [26, 27]. Coulomb 
classifiers [23] are a family of classifiers based on a physical 
analogy to an electrostatic system of charged conductors. 
These Coulomb classifiers are trained to minimize the 
Coulomb energy of three electrostatic systems: (i) uncoupled 
point charges, (ii) coupled point charges, and (iii) coupled 
point charges with battery. Electrostatic field Classifier works 
based on a direct analogy with the electrostatic field, treating 
all data samples as particles interacting with each other [24, 
25]. Two well-performing gravitation-based classifiers are 
[26, 28, 29] and [27]. The data gravitation-based classification 
(DGC) method presented in [26, 28, 29] can effectively 
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classify a new sample by comparing the gravitational forces 
of different classes in the training dataset and choosing the 
class with the highest gravitational force. In contrast, the 
gravitation-based classification (GBC) algorithm presented 
in [27] can successfully perform the classification task by 
minimizing the gravitational potential energy of the classifier 
line due to two groups of fixed-point masses.  

In this paper, a new physics-inspired discriminative 
classifier using a minimum potential line is presented. To 
achieve such a classifier, two groups of fixed point charges 
(as two classes of data) and a movable classifier line between 
them are first considered. By minimizing the total potential 
integral on the classifier line due to the two groups of point 
charges, a stable position for the classifier line is then found. 
Interestingly, it will be shown that the obtained classifier is 
actually an uncertainty-based classifier that minimizes the 
total uncertainty of the classifier line. Experimental results 
show the effectiveness of the proposed approach. 

The remainder of the paper is organized as follows. The 
main results are presented in Section 2. Some experimental 
results indicating the effectiveness of the proposed method 
are given in Section 3. The paper is finally concluded in 
Section 4.

2- Main Results
In this section, we first calculate the integral of the 

potential on a line due to a point charge. Then, by considering 
a system consisting of two groups of fixed point charges (as 
two classes of data) and a movable line (as a classifier line) 
between them, we find a stable position for the classifier line 
by minimizing the total potential integral on the classifier line 
due to the two groups of point charges. Interestingly, we show 
that the obtained classifier is actually an uncertainty-based 
classifier that minimizes the total uncertainty of the classifier 
line. Note that the total potential integral typically represents 
a measure of the energy or cost associated with a system, 
and minimizing it can lead to optimal solutions that satisfy 

certain criteria or constraints. In the context of physics and 
engineering, there is a strong connection between minimizing 
the total potential integral, minimizing the total potential 
energy, and the stability of a system. This connection lies in 
the fact that minimizing potential integral or energy often 
leads to a stable equilibrium point where the system is at 
minimum energy (the principle of minimum total potential 
energy).

2- 1- Necessary preliminaries of electric potential 
In a nutshell, the electric potential is the electric potential 

energy (or work) per unit charge. Practically, the electric 
potential is a continuous scalar function of position. For 
example, the electric potential caused by a point charge is 
continuous in all space except at the point charge location 
and is inversely proportional to the distance from the point 
charge. 

In order to get the necessary mathematical background 
of the electric potential on which the proposed classifier is 
based, consider a fixed point charge q at a distance r  from 
a line of length L , as shown in Fig. 2. The electric potential 
arising from the point charge q  at point x  on the line is 

( )
2 2q
KqV x

r x
=

+
 where K  is Coulomb constant. Therefore, 

the integral of the potential on the line due to the charge q  is 
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(a) A discriminative classifier (b) A generative classifier 

Fig. 1. Discriminative models vs. generative models. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Discriminative models vs. generative models.
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If L r  then Eq. (1) reduces to 
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2- 2- Classifier design based on electric potential
Consider two groups of fixed point charges (as two data 

classes 1C  and 2C ) with known coordinates (features) in 
the Euclidean two-dimensional plane (as a two-dimensional 
feature space) and a movable line between them (as a classifier 
line), as shown in Fig. 3. To design a potential-based classifier, 
we need to find a stable position for the classifier line where 
the total potential integral over the line due to point charges is 
minimal (compared to other possible positions). Note that to 
design the classifier, we ignore the mutual effects of the fixed 
point charges and only consider the electrical effects of the 
fixed point charges on the classifier line. Considering (2), the 

objective function is defined as the total potential integral on 
the line due to the two groups of fixed point charges (denoted 
by tV ):
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in which the point charges { }11, , nq q

 belong to the class 
1C  and the point charges { }1 1 21, ,n n nq q+ +

 belong to the class 
2C . The distance of the point charge iq  from the classifier 

line, denoted by ir , is
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Fig. 2. A fixed point charge q  at a distance r  from a line of length L  ( L r ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. A fixed point charge q  at a distance r  from a line of length L  ( L r ).

 

Fig. 3. Physical model of a linear classifier in two-dimensional space. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Physical model of a linear classifier in two-dimensional space.
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in which [ ]1 21,  , T
i i iX x x= , [ ]0 1 2, , TW w w w= .  and 

[ ]1 2, TW w w=′ . Considering (3) and (4), the optimal vector 
 W °  that leads to a stable position for the classifier line is 
obtained by solving the constrained optimization problem 
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in which the added constraints guarantee the placement of 
the classifier line between two groups of point charges.

Remark 1: By defining the probability of belonging of 
the point charge iq  to its class i

i
rp
L

= , Eq. (5) states that 
the classifier line in its stable position has the minimum 
total (weighted) uncertainty. It is worth mentioning that the 
uncertainty (information) of the charge iq  at a distance ir  of 
the classifier line is defined ( )ln lni i

i

LI p
r

 
= − =  

 
 and it shows 

that the point charge closer to the classifier line charge has 
more uncertainty. Moreover, the coefficient iq  in (5) shows 
the weight (importance) of the charge iq  in designing the 
classifier line.

3- Experimental Results
In this section, we evaluate the performance of the 

proposed method by testing it on both synthetic and real 
datasets.  

3- 1- Results for synthetic dataset 
Two synthetic datasets shown in Fig. 4 are constructed 

to visually demonstrate the effectiveness of the proposed 
method. As seen in Fig. 4, the experimental results on these 
synthetic datasets show that the proposed method performs 
well. It is worth mentioning that synthetic data is often used 
to visually illustrate the efficacy of a classification method, 
especially in 2-D or 3-D spaces. These visualizations help 
researchers and practitioners understand how the algorithm 
separates different classes in the feature space and assess 
its performance in discriminating between them. However, 
there are common metrics in machine learning for providing 
quantitative results about the performance of a method on 
synthetic data. Accuracy, as one of the most common metrics, 
measures the proportion of correctly classified instances out 
of the total instances in the dataset. Considering this, the 
accuracy of our method for the synthetic datasets presented 
in Fig. 4 is 100%. Moreover, Note that although a linear 
classifier is designed above, it can be extended to separate 
non-linear separable data by mapping the input data into a 
higher-dimensional feature space (HDS) where they become 
linearly separable. Figure 5 shows the proposed method in 
HDS.

Considering Fig. 5 and (5), the proposed method in HDS 
is formulated as  

  

(a)  (b)  

Fig. 4. Decision boundary for two synthetically generated datasets. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Decision boundary for two synthetically generated datasets.
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Here, for every feature vector iX  in the input space, 
( ) ( ) ( ) ( )1 2, , ,  , , ,

T
i i i i kX X C X C X Cϕ ϕ ϕ ϕ =    represents the new 

feature vector in a HDS that is applied to the proposed 
model as new input data, [ ]0 1 2, , , , T

kW w w w w=   and 
[ ]1 2, , , T

kW w w w′ = 
. In this paper, input non-linear 

separable data are mapped into a HDS through the Gaussian 
Radial Basis Function (RBF) kernel. The Gaussian RBF 
kernel is a popular kernel, calculating the similarity or 
distance between data points in the transformed space, which 
is defined as

( )
2

, exp j
j

X C
X Cϕ

σ

 − − =
 
 

 (7)

where Rσ ∈  is the width of the Gaussian RBF function. 
This kernel function allows for capturing complex patterns 
and relationships in the data, making it a versatile and 
powerful tool in machine learning applications. Figure 4 
shows two examples of the proposed method in HDS, where 
two non-linear separable classes can be effectively separated 
by mapping into a HDS through the Gaussian RBF kernel. 

Note that the distance ( )
|| ||

T
i

i

W X
r

W
ϕ

=
′

 in (6) is the distance of 
the point charge iq  from the decision boundary which is a 
hyper-plane in a HDS.

3- 2- Results for real dataset 
Some real-world benchmark datasets were selected from 

the well-known UCI machine learning repository (available 
at: http://www.ics.uci.edu/~mlearn/databases/) which their 
main characteristics are depicted in Table 1. In this Table, it 
is evident that some datasets contain more than two classes, 
while the proposed method was originally designed for a two-
class problem. To address this, the method can be extended 
to multi-class classification using a “one-vs-one” strategy, 
where each multi-class classification is broken down into 
individual two-class classification problems for each pair of 
classes. Consequently, a K -class classification transforms 
into ( )1 / 2K K −  two-class problems. Note that to avoid the 
dependence of the results on the values of each feature range, 
first, all features in the datasets are normalized to fall within 
the common range [0, 1] by using the min–max normalization 
method. In this method, the normalized feature value normf  
for an original feature value f  is scaled as follows:
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in which minf  and maxf  are the minimum and maximum 
values of that feature in the dataset, respectively. 

Moreover, 10-fold cross-validation is used to evaluate 

 

Fig. 5. The proposed method in HDS. 
 

 

 

Fig. 5. The proposed method in HDS.
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the proposed model. In 10-fold cross-validation, each dataset 
is randomly partitioned into 10 approximately equal-sized 
subsets (or folds); one subset is retained as the test data for 
evaluating the model, and the remaining nine subsets are used 
to train the model. Then, this process is repeated 10 times, and 
each time one of the 10 subsets is used as the test data. Table 2 
shows the accuracy results of each fold as well as the best and 
mean accuracy results from the 10-fold cross-validation test 
for the different datasets using the proposed method.

Table 3 compares the classification performance of the 
proposed method with six well-known classification methods, 
including five discriminative models (SVM, KNN, GBC, 
DGC+ and FFW-DGC) and one generative model (naive 
Bayes), on 8 standard datasets shown in Table 1.

As seen in Table 3, the proposed method outperforms 
the other methods in 3 datasets and obtains competitive 
accuracy results in the other datasets. To justify this superior 
performance, we take a closer look at Eq. (5) where the 
optimal vector  W °  that leads to a stable position for the 
classifier depends on three factors: (i) the amount of charge “

iq ”, (ii) the distance “ ir ”, and (iii) the “ ( )log . ” function. The 
weighting factor iq  shows the importance of each data and 
can be adjusted in such a way that it takes into account a much 
lower weighting effect for outliers. The distance “ ir ” has an 
inverse impact such that the samples that are too far from the 
other samples or the decision boundary such as outliers, have 
less importance. The logarithm transformation is a valuable 
tool in data science, as it has the intriguing capability to 

Table 1. Benchmark datasets’ summaryTable 1. Benchmark datasets’ summary 

Dataset name No. of classes No. of features No. of samples 

Ecoli 8 7 336 
Glass 7 9 214 

Ionosphere 2 34 351 
Iris 3 4 150 

Pima 2 8 768 
Vehicle 4 18 846 
WBCD 2 10 683 
Wine 3 13 178 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Accuracy results from 10-fold cross-validation test using the proposed method (in percentage).Table 2. Accuracy results from 10-fold cross-validation test using the proposed method (in percentage). 

Dataset 
name 

Accuracy results in Fold # 
Best Mean 

Fold 
#1 

Fold 
#2 

Fold 
#3 

Fold 
#4 

Fold 
#5 

Fold 
#6 

Fold 
#7 

Fold 
#8 

Fold 
#9 

Fold 
#10 

Ecoli 97.20 94.10 93.88 94.15 93.70 95.06 95.06 94.32 93.46 95.64 97.20 95.15 
Glass 86.72 87.06 88.14 86.55 90.48 88.06 86.25 90.22 89.80 88.14 90.48 89.14 

Ionosphere 98.29 93.14 92.29 96.29 95.43 84.57 96.29 91.71 93.61 90.88 98.29 93.25 
Iris 86.67 100 100 80 100 100 93.33 93.33 100 100 100 95.33 

Pima 76.62 72.73 69.74 68.83 79.22 75.33 76.62 72.73 76.32 74.03 79.22 74.22 
Vehicle 80.95 75.29 74.12 69.05 83.53 83.33 71.43 64.71 75.29 85.88 85.88 76.36 
WBCD 99.12 97.10 95.74 96.32 87.35 99.27 96.91 97.25 94.41 96.96 99.27 96.04 
Wine 94.12 100 100 94.44 94.44 100 100 100 88.89 100 100 97.19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M. Monemizadeh et al., AUT J. Electr. Eng., 56(3) (2024) 495-502, DOI: 10.22060/eej.2024.22694.5557

501

reduce the impact of samples located in proximity to or too far 
from the decision boundary. The combination of these factors 
in the proposed classifier, which employs the principle of 
minimum potential energy to establish a stable position, leads 
to improved robustness, particularly in handling outliers. It is 
noteworthy that the FFW-DGC method yields results that are 
nearly comparable to our method (slightly inferior overall). 
This similarity may stem from the common utilization of 
the “ ( )log . ” function in both methods, as FFW-DGC also 
incorporates a mutual information metric. Moreover, as seen 
in Table 3, in the presence of sufficient labeled training data, 
discriminative classifiers outperform generative classifiers 
(here, naive Bayes). 

An important factor to consider when selecting a classifier 
for a particular application is its run time. The run time of 
a classification algorithm consists of both the training and 
testing phases. In classifiers such as SVM, a significant 
portion of the run time is devoted to the training phase, while 
the testing phase usually occupies a much smaller fraction 
of the total algorithm run time. Such classifiers are suitable 
for offline applications because the lengthy training phase 
does not impact the algorithm’s performance. Conversely, 
in algorithms like KNN, the majority of the run time is 
consumed after receiving the test data. The FFW-DGC 
and DGC+ methods are enhanced versions of the nearest-
neighbor concept. Despite incorporating some time-saving 
modifications, these classifiers defer the main computations 
of the classification phase until receiving the test data, which 
may be very time-consuming and reduce the efficiency of 
these methods, akin to the KNN method. In the proposed 

method and GBC, similar to SVM, the training phase 
constitutes a very small fraction of the total runtime, while the 
training phase consumes a significant portion of the runtime. 
Consequently, owing to its high classification accuracy, our 
proposed classifier is well-suited for applications where the 
training phase is conducted offline.

4- Conclusion
In this paper, a potential-based discriminative 

classification method was presented, where the two-class 
classification problem was modeled as the problem of placing 
a classifier line between two groups of fixed point charges 
and finding an equilibrium point for the classifier line. To 
determine the equilibrium point parameters, we minimized 
the total potential of the classifier line due to two groups of 
point charges. Interestingly, we saw that minimizing potential 
is equivalent to minimizing uncertainty. The effectiveness of 
the proposed method was validated by some experiments on 
both synthetic and real datasets.
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