[1] P. Gupta, J. Roy, M. Prasad, Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants, Current science, (2001) 524-535.
[2] R.A. Gibbs, J.W. Belmont, P. Hardenbol, T.D. Willis, F. Yu, H. Yang, L.-Y. Ch'ang, W. Huang, B. Liu, Y. Shen, The international HapMap project, (2003).
[3] X. Zhu, S. Zhang, D. Kan, R. Cooper, Haplotype block definition and its application, in: Biocomputing 2004, World Scientific, 2003, pp. 152-163.
[4] M.-H. Moeinzadeh, J. Yang, E. Muzychenko, G. Gallone, D. Heller, K. Reinert, S. Haas, M. Vingron, Ranbow: a fast and accurate method for polyploid haplotype reconstruction, PLOS Computational Biology, 16(5) (2020) e1007843.
[5] S. Majidian, M.H. Kahaei, D. De Ridder, Hap10: Reconstructing accurate and long polyploid haplotypes using linked reads, BMC bioinformatics, 21(1) (2020) 1-18.
[6] A. Najafi, D. Nashta-ali, S.A. Motahari, M. Khani, B.H. Khalaj, H.R. Rabiee, Fundamental limits of pooled-DNA sequencing, arXiv preprint arXiv:1604.04735, (2016).
[7] A. Rhoads, K.F. Au, PacBio sequencing and its applications, Genomics, proteomics & bioinformatics, 13(5) (2015) 278-289.
[8] R.J. Roberts, M.O. Carneiro, M.C. Schatz, The advantages of SMRT sequencing, Genome biology, 14(6) (2013) 1-4.
[9] H. Lu, F. Giordano, Z. Ning, Oxford Nanopore MinION sequencing and genome assembly, Genomics, proteomics & bioinformatics, 14(5) (2016) 265-279.
[10] M.A. Quail, I. Kozarewa, F. Smith, A. Scally, P.J. Stephens, R. Durbin, H. Swerdlow, D.J. Turner, A large genome center's improvements to the Illumina sequencing system, Nature methods, 5(12) (2008) 1005-1010.
[11] G. Lancia, V. Bafna, S. Istrail, R. Lippert, R. Schwartz, SNPs problems, complexity, and algorithms, in: ESA, Springer, 2001, pp. 182-193.
[12] R. Lippert, R. Schwartz, G. Lancia, S. Istrail, Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem, Briefings in bioinformatics, 3(1) (2002) 23-31.
[13] V. Bansal, V. Bafna, HapCUT: an efficient and accurate algorithm for the haplotype assembly problem, Bioinformatics, 24(16) (2008) i153-i159.
[14] W. Qian, Y. Yang, N. Yang, C. Li, Particle swarm optimization for SNP haplotype reconstruction problem, Applied mathematics and Computation, 196(1) (2008) 266-272.
[15] T.-C. Wang, J. Taheri, A.Y. Zomaya, Using genetic algorithm in reconstructing single individual haplotype with minimum error correction, Journal of biomedical informatics, 45(5) (2012) 922-930.
[16] M.-H. Olyaee, A. Khanteymoori, AROHap: An effective algorithm for single individual haplotype reconstruction based on asexual reproduction optimization, Computational biology and chemistry, 72 (2018) 1-10.
[17] S. Majidian, M.H. Kahaei, NGS based haplotype assembly using matrix completion, PLoS One, 14(3) (2019) e0214455.
[18] S. Majidian, M.M. Mohades, M.H. Kahaei, Matrix completion with weighted constraint for haplotype estimation, Digital Signal Processing, 108 (2021) 102880.
[19] M.M. Mohades, S. Majidian, M.H. Kahaei, Haplotype assembly using manifold optimization and error correction mechanism, IEEE Signal Processing Letters, 26(6) (2019) 868-872.
[20] A. Panconesi, M. Sozio, Fast hare: A fast heuristic for single individual SNP haplotype reconstruction, in: Algorithms in Bioinformatics: 4th International Workshop, WABI 2004, Bergen, Norway, September 17-21, 2004. Proceedings 4, Springer, 2004, pp. 266-277.
[21] X.-S. Xu, Y.-X. Li, Semi-supervised clustering algorithm for haplotype assembly problem based on MEC model, International journal of data mining and bioinformatics, 6(4) (2012) 429-446.
[22] S. Mazrouee, W. Wang, FastHap: fast and accurate single individual haplotype reconstruction using fuzzy conflict graphs, Bioinformatics, 30(17) (2014) i371-i378.
[23] M.H. Olyaee, A. Khanteymoori, E. Fazli, A fuzzy c-means clustering approach for haplotype reconstruction based on minimum error correction, Informatics in Medicine Unlocked, 25 (2021) 100646.
[24] F. Zamani, M.H. Olyaee, A. Khanteymoori, NCMHap: a novel method for haplotype reconstruction based on Neutrosophic c-means clustering, Bmc Bioinformatics, 21 (2020) 1-15.
[25] Y. Ono, K. Asai, M. Hamada, PBSIM: PacBio reads simulator—toward accurate genome assembly, Bioinformatics, 29(1) (2013) 119-121.
[26] Y. Ono, K. Asai, M. Hamada, PBSIM2: a simulator for long-read sequencers with a novel generative model of quality scores, Bioinformatics, 37(5) (2021) 589-595.
[27] APP amyloid beta precursor protein [Homo sapiens (human)] - Gene - NCBI, in, National Center for Biotechnology Information.
[28] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, G.P.D.P. Subgroup, The sequence alignment/map format and SAMtools, bioinformatics, 25(16) (2009) 2078-2079.
[29] P. Edge, V. Bafna, V. Bansal, HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies, Genome research, 27(5) (2017) 801-812.
[30] S. Majidian, M.H. Kahaei, D. de Ridder, Minimum error correction-based haplotype assembly: Considerations for long read data, Plos one, 15(6) (2020) e0234470.