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ABSTRACT: The Haplotype Assembly is the computational process in which two distinct nucleotide 
sequences of chromosomes are reconstructed using the sequencing reads of an individual. The ability to 
identify haplotypes provides many benefits for future genomic-based studies to be conducted in many 
areas, such as drug design, population study, and disease diagnosis. Even though several approaches 
have been put out to achieve highly accurate haplotypes, the problem of quick and precise haplotype 
assembly remains a challenging task. Due to the enormous bulk of the high-throughput sequencing 
data, algorithm speed plays a crucial role in the possibility of haplotype assembly in the human genome 
dimension. This study introduces a heuristic technique that enables rapid haplotype reconstruction while 
maintaining respectable accuracy. Our approach is divided into two parts. In the first, a partial haplotype 
is created and enlarged over a number of iterations. We have employed a novel metric to assess the 
reconstructed haplotype’s quality in each iteration to arrive at the optimal answer. The second stage of 
the algorithm involves refining the reconstructed haplotypes to increase their accuracy. The outcome 
reveals that the suggested approach is capable of reconstructing the haplotypes with an acceptable level 
of accuracy. In terms of speed, the performance of the algorithm surpasses the competing approaches, 
especially in the case of high-coverage sequencing data.
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1- Introduction
The genome of humans and other diploid species contains 

two homologous sets of chromosomes: a mother-inherited 
set and a father-inherited set. It has been discovered that 
the genome sequences of every two people are 99.5 percent 
identical, and variants in less than 1% of the genome play 
a major role in phenotypic variation and human disease [1]. 
Single nucleotide polymorphisms (SNPs) are sites in genome 
sequence where one DNA base differs between individuals [1, 
2]. The term haplotype refers to a group of SNPs located on a 
distinct chromosome. The determination of haplotypes offers 
many advantages for genomic-based studies, like medical 
research, drug design, disease diagnosis, evolution studies, and 
population studies [3]. It is highly preferred to use computer 
algorithms to infer haplotypes since experimental methods 
are labor-intensive and time-consuming. Although this study 
focuses on diploid species, some groups of amphibians and 
food plants are included in the category of polyploid species, 
whose haplotype reconstruction has recently been considered 
in several articles [4, 5].

Due to the inability of current sequencing technologies 
to read an entire chromosome consecutively, the input data 
for the computational haplotype assembly problem are a 

collection of numerous short reads of DNA fragments. As 
each fragment is derived from one of the unknown haplotypes, 
the haplotype assembly task in diploids is to divide all these 
fragments into two subsets and obtain the corresponding two 
haplotypes. Under the assumption that all reads are noiseless, 
we can assemble the two original sequences by exploiting the 
overlaps between fragments. However, in practice, gaps and 
errors make this problem more challenging and complicated. 
A unique and correct genome assembly is guaranteed by 
two necessary and sufficient conditions for noiseless data. 
Firstly, the SNP coverage condition indicates that every SNP 
position should be covered by at least one fragment from each 
chromosome. Next, the Bridging condition states that every 
identical region between two chromosomes must be bridged 
by at least one fragment from either of the chromosomes 
[6]. Consequently, long-read data are needed to solve the 
haplotype assembly problem. As sequencing technologies 
advance, longer reads will be generated. There have already 
been several hundred kilobases read lengths achieved by 
third-generation sequencing technologies, including PacBio 
(Pacific Bio-Sciences) [7, 8] and ONT (Oxford Nanopore 
Technology) [9], While the largest fragments produced by 
second-generation sequencing technology are just 400 base 
pairs long [10]. However, lengthening fragments results in 
additional reading sequence errors. To lessen the impact of 
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mistakes in haplotype assembly, it is critical to enhance data 
coverage. The requirement for fast algorithms is highlighted 
by this enormous quantity of fragments and the length of the 
human genome sequence. There are several models used for 
this purpose, the most well-known of which are Minimum 
SNP Removal (MSR) [11], Minimum Fragment Removal 
(MFR) [11], and Minimum Error Correction (MEC) [12]. In 
several recent algorithms [13-16], MEC has been applied as 
the most complex but most efficient model. This model seeks 
to divide the collection of fragments into two subsets with the 
fewest changes to the SNP values.  Due to the NP-Hard nature 
of MEC and other models, some solutions take advantage of 
heuristic techniques by exchanging MEC score for rapidity. 
There are also several other proposed algorithms that have 
recently adopted strategies, such as matrix completion, to 
solve the haplotype assembly problem [17-19].

One of the earliest rapid heuristic methods to solve the 
haplotype assembly problem was the FastHare algorithm, 
presented by Panconesi and Sozio [20]. In this approach, the 
first aligned fragment is used to rebuild two partial haplotypes, 
and further fragments are allocated to one of the haplotypes 
depending on a given distance. There are a number of methods 
that make use of graphs with fragments as their vertices and 
distances or similarities between fragments as their edges. In 
other words, a measure like a similarity needs to be calculated 
between each pair of fragments, and the calculation cost 
relies on the number of reads. SSK, introduced by Xin-Shun 
Xu and Ying-Xin Li [21], is an instance of these methods. 
The first phase of this semi-supervised clustering method 
involves computing the similarity between each pair of 
fragments. Afterward, phase 2 utilizes some beneficial results 
gathered from phase 1 to aid k-means in clustering all the 
reads. A further heuristic technique called Fasthap [22] uses 
a fuzzy conflict graph of reads to create a preliminary split 
of the fragments according to differences between every two 
fragments; later, it refines the original grouping to improve 
the MEC score. Several additional methods are based on the 
fuzzy conflict graph that Fasthap first developed [23, 24]. 
As an example, FCMHap [23] infers two haplotypes from a 
fuzzy conflict graph and utilizes them as the starting centers 
of clustering for fuzzy c-means (FCM). A great deal of time is 
spent creating such a graph in the aforementioned approaches 
and any other novel methods that utilize a pairwise distance 
between fragments.

In this study, we present a heuristic algorithm that achieves 
a high speed of haplotype assembly while maintaining an 
acceptable MEC score. In contrast to the previous methods, 
this method does not require calculating the distance between 
all pairs of fragments, but partial haplotypes are constructed 
based on a large number of fragments in each iteration, so 
it accelerates convergence and brings about a reduction in 
computational cost.

This paper has a structure as follows: Section 2 presents a 
brief definition of the haplotype assembly problem, followed 
by a discussion of the problem formulation, our approach, and 
evaluation metrics. In section 3, a description of the dataset 
and materials is provided, and then the results are discussed. 

Lastly, the conclusion of the study is presented in section 4.

2- Materials and Methods 
2- 1- Problem definition

As mentioned before, a set of reads provides the input to 
the haplotype assembly problem. A sequence aligner is used 
to map the reads to a reference genome before beginning any 
haplotype assembly method. Once the loci of heterozygous 
variants are identified, they are written into an m × n variant 
matrix, where m and n are the numbers of reads and SNPs, 
respectively. The haplotype assembly task involves clustering 
reads into two groups and determining the consensus 
sequences for each group to reconstruct the haplotypes. 
Fig. 1 illustrates how a haplotype can be reconstructed from 
noiseless fragments.

It is currently impossible for any of the high throughput 
sequencing technologies to produce error-free reads; therefore, 
the corresponding SNP matrix would not be bipartisan. It is 
necessary to consider some components of the SNP matrix 
to be errors and flip them to produce a bipartisan matrix. To 
evaluate the efficiency of different algorithms, the number of 
these error corrections is reported as the MEC measure. As 
previously stated, attaining the minimum of this metric is an 
NP-hard task; hence heuristic methods are preferable.

2- 2-  Formulation and proposed method 
Suppose M is an input SNP fragment matrix  of size 
  m n× , where the rows represent fragments, the columns 

represent SNP sites, and its values are { }0,1, 1ijm ∈ − . In 
this study, each matrix member ijm  is assigned one of the 
integers 1,  -1 or 0, depending on whether the thi  site of the 

thj  read corresponds to the most frequent allele, the rare one 
in the thi  column, or a gap, respectively. The procedure of 
constructing matrix M is depicted in Fig. 2. An approximate 
haplotype is represented by { }21 ,  , ˆĤ h h= where ( ) 1k̂ nh × is a 
vector in which { }1ˆ 1,kjh ∈ −  and the subscript k  is assigned 
the values   1 or 2, indicating whether k̂h  is the first or second 
haplotype. 1̂h  and  2 h  are randomly initialized with the 
condition that 1 2

ˆ ˆ
j jh h= − . To measure the compatibility 

between reads and each estimated haplotype k̂h  , we have 
created a vector namely fragment compatibility (fc) by:

𝑓𝑓𝑓𝑓 𝑘𝑘 = 𝑀𝑀 × ℎ̂𝑘𝑘
𝑇𝑇 =  [

𝛿𝛿1
𝛿𝛿2
⋮
𝛿𝛿𝑚𝑚
]                                                                                                                                (1) 

 

𝛿𝛿𝑖𝑖 =∑𝑚𝑚𝑖𝑖𝑖𝑖. ℎ̂𝑘𝑘
 

𝑛𝑛

𝑖𝑖=1
= 𝑓𝑓𝑖𝑖. ℎ̂𝑘𝑘

                                                                                                                                  (2) 

 

𝐶𝐶𝐶𝐶𝑘𝑘 =
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1
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                                                                                        (3) 
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                    ∑  𝑓𝑓𝑖𝑖𝑖𝑖
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Fig. 1. A demonstration of a haplotype assembly process using error-free fragments 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A demonstration of a haplotype assembly process using error-free fragments

 
Fig. 2. The procedure of constructing the numeric matrix from SNP fragments  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The procedure of constructing the numeric matrix from SNP fragments 
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In Fig. 3 an example has been provided that depicts Eq.1 
and 2 in a practical context. When iδ  (absolute value of 

iδ  )  is large, it indicates that the fragment if  has a high 
probability of being compatible with either of the two 
determined haplotypes, which makes it easier to cluster. In 
other words, as iδ   becomes more positive, the probability 
that if  will be related to 1̂h  is increased. On the other hand, 
as iδ  becomes more negative, the probability that if  will be 
related to another haplotype 2̂h  is increased, and therefore it 
can be deduced that 1 2

ˆ ˆ
j jh h= − .  In the case of a zero value 

of iδ , you can consider the problem as being a case that if  
cannot be grouped into either 1̂h  or 2ĥ .

Our presented algorithm, which we’ve called QuickHap, 
comprises two main phases: the first is the quick partitioning 
stage, and the second is the refinement stage. The flowchart 
in Fig. 4 depicts the different stages of the algorithm in great 
detail. The first phase begins with the construction of an 
approximate preliminary haplotype, which is then iteratively 
expanded utilizing a lot of fragments at each cycle. To put it 
another way, in each iteration, a lot of fragments are clustered 
using the fragment compatibility vector. In this paper, we 
present a new metric, Clustering Rate (CR), which assesses 
the validity of the reassembled haplotype and is defined as 
follows: 

𝑓𝑓𝑓𝑓 𝑘𝑘 = 𝑀𝑀 × ℎ̂𝑘𝑘
𝑇𝑇 =  [

𝛿𝛿1
𝛿𝛿2
⋮
𝛿𝛿𝑚𝑚
]                                                                                                                                (1) 

 

𝛿𝛿𝑖𝑖 =∑𝑚𝑚𝑖𝑖𝑖𝑖. ℎ̂𝑘𝑘
 

𝑛𝑛

𝑖𝑖=1
= 𝑓𝑓𝑖𝑖. ℎ̂𝑘𝑘

                                                                                                                                  (2) 

 

𝐶𝐶𝐶𝐶𝑘𝑘 =
∑ |∑ 𝑚𝑚𝑖𝑖𝑖𝑖 ℎ̂𝑘𝑘𝑖𝑖

 𝑛𝑛
𝑖𝑖=1 |𝑚𝑚

𝑖𝑖=1

∑ ∑ |𝑚𝑚𝑖𝑖𝑖𝑖|
2𝑛𝑛

𝑖𝑖=1
𝑚𝑚
𝑖𝑖=1

=  
‖𝑀𝑀 × ℎ̂𝑘𝑘

𝑇𝑇 ‖
1

‖𝑀𝑀‖𝐹𝐹2
                                                                                        (3) 

 

𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶1 + 𝐶𝐶𝐶𝐶22                                                                                                                                            (4) 

 

 

 ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 =

{ 
 
  
∑  𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
|∑  𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 |

                    ∑  𝑓𝑓𝑖𝑖𝑖𝑖
𝑖𝑖

≠ 0
 
 

   0                           𝑜𝑜𝑜𝑜ℎ𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛

                                                                                          (5) 

 

ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = {
+1                    𝑛𝑛1(𝑗𝑗) > 𝑛𝑛−1(𝑗𝑗)   
−1                    𝑛𝑛1(𝑗𝑗) < 𝑛𝑛−1(𝑗𝑗)   
0                         𝑜𝑜𝑜𝑜ℎ𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛      

                                                                                            (6) 

 

 

𝑑𝑑(𝑥𝑥, 𝑦𝑦) = {1          𝑒𝑒𝑓𝑓   𝑥𝑥 ≠ 𝑦𝑦   & x, 𝑦𝑦 ∈ {1,−1}
0          𝑜𝑜𝑜𝑜ℎ𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛                                                                                                                          (7) 

 

 (3)

𝑓𝑓𝑓𝑓 𝑘𝑘 = 𝑀𝑀 × ℎ̂𝑘𝑘
𝑇𝑇 =  [

𝛿𝛿1
𝛿𝛿2
⋮
𝛿𝛿𝑚𝑚
]                                                                                                                                (1) 

 

𝛿𝛿𝑖𝑖 =∑𝑚𝑚𝑖𝑖𝑖𝑖. ℎ̂𝑘𝑘
 

𝑛𝑛

𝑖𝑖=1
= 𝑓𝑓𝑖𝑖. ℎ̂𝑘𝑘

                                                                                                                                  (2) 

 

𝐶𝐶𝐶𝐶𝑘𝑘 =
∑ |∑ 𝑚𝑚𝑖𝑖𝑖𝑖 ℎ̂𝑘𝑘𝑖𝑖

 𝑛𝑛
𝑖𝑖=1 |𝑚𝑚

𝑖𝑖=1

∑ ∑ |𝑚𝑚𝑖𝑖𝑖𝑖|
2𝑛𝑛

𝑖𝑖=1
𝑚𝑚
𝑖𝑖=1

=  
‖𝑀𝑀 × ℎ̂𝑘𝑘

𝑇𝑇 ‖
1

‖𝑀𝑀‖𝐹𝐹2
                                                                                        (3) 

 

𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶1 + 𝐶𝐶𝐶𝐶22                                                                                                                                            (4) 

 

 

 ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 =

{ 
 
  
∑  𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
|∑  𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 |

                    ∑  𝑓𝑓𝑖𝑖𝑖𝑖
𝑖𝑖

≠ 0
 
 

   0                           𝑜𝑜𝑜𝑜ℎ𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛

                                                                                          (5) 

 

ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = {
+1                    𝑛𝑛1(𝑗𝑗) > 𝑛𝑛−1(𝑗𝑗)   
−1                    𝑛𝑛1(𝑗𝑗) < 𝑛𝑛−1(𝑗𝑗)   
0                         𝑜𝑜𝑜𝑜ℎ𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛      

                                                                                            (6) 

 

 

𝑑𝑑(𝑥𝑥, 𝑦𝑦) = {1          𝑒𝑒𝑓𝑓   𝑥𝑥 ≠ 𝑦𝑦   & x, 𝑦𝑦 ∈ {1,−1}
0          𝑜𝑜𝑜𝑜ℎ𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛                                                                                                                          (7) 

 

 (4)

This measure always returns a number between 0 and 
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Fig. 4. Flowchart of the proposed approach 

Fig. 4. Flowchart of the proposed approach
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Where ( )1n j  is the number of fragments whose thj
element is 1, and ( )1    n j−  represents the number of 
fragments with thj  SNP of -1. As a final step of phase 1, 
The CR of both 1_h new  and 2 _h new  are recalculated; if 
the enhancement in CR is considerable, the entire procedure 
is repeated.

Two clustered groups of fragments from the first 
stage’s output are used as the second stage’s input. The 
second stage is carried out in accordance with the Fasthap 
method’s refinement phase; MEC Scores are calculated for 
approximated clusters and haplotypes, and the fragments 
with the greatest variations within their group are shifted to 
the other set. This phase is repeated as long as a decrease 
in the MEC error occurs during the process. A formula for 
calculating MEC is provided below in the section devoted to 
evaluation.

2- 3- Performance evaluation
To assess the performance of the algorithm, A number 

of measurements have been computed, including MEC, 
the execution time, and the Reconstruction Rate (RR). As 
previously stated, the MEC score refers to the minimum 
number of SNP alterations necessary to divide the variation 
matrix into two haplotype-specific submatrices. The 
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The RR will be helpful if the actual haplotypes are known, 
and the ground truth is accessible. In our research, the real 
haplotypes were accessible to us via the data simulation. 
If { }1 2 ,H h h=  are the accurate haplotypes, the correctness 
of the approximated haplotypes { }21̂

ˆ  ,  H h h=  would be 
described by RR as follows:
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3- Validation.
3- 1- Dataset and setup

The read sequences have been simulated utilizing PBSIM, 
which is a simulator for PacBio sequencing reads [25, 26]. The 
synthetic (yet realistic) sequencing reads were derived from 
the APP gene of chromosome 21 of the GRCh38 reference 

genome [27], and random SNPs were inserted. From the output 
FASTQ files generated as a result of PBSIM, the BAM and 
VCF files were extracted, and fragment files were generated 
using the ExtractHairs program [28, 29]. Simulations were 
performed using various parameter combinations such as 
coverage { } 5,1 0, 20C = , read length { } 5, 7.5,1 0,1 5, 20, 25L =  
kbp, and error rate { } 0.01, 0.05, 0.1, 0.2, 0.3, 0.4e = . The 
experiments were conducted on an Intel Core i7 processor 
running 2.6 GHz with 16GB of RAM.

3- 2- Results
QuickHAP is compared in this experiment with several 

state-of-the-art methods, including SSK, FastHAP, and 
FCMHAP, which are based on fuzzy conflict graphs of 
fragments. The impact of error rate on the efficiency of 
various algorithms is depicted in Fig. 5. In this graph, the 
average MEC Score for every method is plotted against its 
error rate. The MEC cost of our approach QuickHap, as 
can be seen, is below the MEC of SSK and FCMHap by a 
considerable margin for all error rates and engages in rivalry 
with the FASTHap method. 

The average MEC costs for the algorithms are plotted 
versus coverage and read length in Figs. 6 and 7, respectively, 
providing a comparison in which, just like in Fig. 5, FastHap 
is the only algorithm to compete with QuickHap.

Since there is no ground truth in the haplotype assembly 
problem on the actual data, the MEC criterion is considered 
as the most useful measure for comparing the performance 
of the haplotype assembly algorithms. Still, since it has been 
proven in some articles that a lower MEC criterion does not 
necessarily mean a higher accuracy [30], another measure, 
namely RR is evaluated in our study, which is mainly 
applicable to the simulated data.

In Figures 8, 9, and 10, the average RRs are plotted 
against the error rate, coverage, and read length, respectively. 
The bar graphs reveal that QuickHap, FCMHap, and FastHap 
are competing, particularly with increasing error rates.

The average time of execution for various error rates, 
coverages, and read lengths are presented in Fig. 11, 12, and 
13, respectively. This study demonstrates that the algorithms’ 
execution times get shorter as the read length grows; this is 
because longer reads of data with fixed coverage result in 
fewer fragments and faster analysis. It is worth to note that 
in all graphs, QuickHAP’s average execution time is shorter 
than that of the other three techniques.

By taking a closer look at the bar charts, it can be 
concluded that when measuring method performance based 
on MEC cost, FastHap and QuickHap are in competition, and 
if Reconstruction Rate is taken into account as a criterion of 
accuracy, FCMHap, FastHAP, and QuickHap are roughly on 
par. Additionally, in our proposed approach, we have observed 
an improvement in average execution time almost across all 
error rates, coverages, and read lengths. To allow for a more 
detailed analysis of the result, Tables 1-3 are provided for 
data with a read length of 5000.

The MEC cost of algorithms across different coverage 
and error rate combinations are listed in Table 1, and the best 
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Fig. 5. The average MEC costs of the algorithms versus error rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The average MEC costs of the algorithms versus error rate

 
Fig. 6. The average MEC costs of the algorithms versus coverage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The average MEC costs of the algorithms versus coverage 
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Fig. 7. The average MEC cost of the algorithms versus read length 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The average MEC cost of the algorithms versus read length

 
Fig. 8. Average RR of the algorithms versus error rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Average RR of the algorithms versus error rate
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Fig. 9. Average RR of the algorithms versus coverage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Average RR of the algorithms versus coverage

 

Fig. 10. Average RR of the algorithms versus read length 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Average RR of the algorithms versus read length
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Fig. 12. Average execution time of the algorithms versus coverage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Average execution time of the algorithms versus coverage

 
Fig. 11. Average execution time of the algorithms versus error rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Average execution time of the algorithms versus error rate
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Fig. 13. Average execution time of the algorithms versus read length 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Average execution time of the algorithms versus read length

Table 1. A comparison of MEC costs based on coverage and error rateTable 1. A comparison of MEC costs based on coverage and error rate 

C e SSK FastHap FCMHap Quickhap 

5 0.01 424 456 1280 390 

5 0.05 1904 1484 4083 1476 

5 0.1 3340 2663 5453 2637 

5 0.2 4899 4476 6936 4493 

5 0.3 6309 5995 7323 6202 

5 0.4 7029 6720 7327 6982 

10 0.01 1240 870 4350 870 

10 0.05 3828 2999 11748 3129 

10 0.1 6543 5193 14572 5360 

10 0.2 10878 9495 16105 9450 

10 0.3 13882 13361 16720 13977 

10 0.4 16102 15621 16764 15733 

20 0.01 3161 2069 14782 2304 

20 0.05 9228 6923 29837 7494 

20 0.1 13605 11497 33967 12003 

20 0.2 21241 19352 35547 20323 

20 0.3 29726 28079 35971 28792 

20 0.4 34856 33807 36188 34022 
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outcomes in each row are highlighted in bold.
Table 2 details the average RRs of the algorithms in 

various error rates and coverages. The highest value in 
each row is highlighted in bold. As can be seen, QuickHap 
frequently competes with FastHAP and FCMHap, sometimes 
even surpassing them. 

Table 3 demonstrates the details of the algorithm’s 
performance in terms of speed for different coverages and 
error rates. According to the running time values, QuickHap 
is the most rapid algorithm in almost all cases. This 
superiority in speed is particularly more evident in data with 
high coverage. 

According to the obtained results, the proposed algorithm 
can solve the haplotype reconstruction problem for almost 
all inputs with the highest speed and acceptable accuracy. As 
stated earlier, SSK, FastHap, and FCMHap are based on a 
distance calculation between each pair of reads. Therefore, 
these methods have the drawback of slowing down the 
reconstruction process when increasing coverage and the 
number of fragments. Based on the results of our speed 
analysis, we can conclude that the proposed algorithm is 
capable of reconstructing haplotypes at a promising speed, 
particularly when dealing with high-coverage sequencing 
data.

Table 2. A comparison of RR based on coverage and error rateTable 2. A comparison of RR based on coverage and error rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

C e SSK FastHap FCMHap Quickhap 

5 0.01 0.9142 0.9178 0.8916 0.9220 

5 0.05 0.5234 0.5345 0.5136 0.5187 

5 0.1 0.5317 0.5317 0.5438 0.5638 

5 0.2 0.5069 0.5163 0.5069 0.5228 

5 0.3 0.5139 0.5130 0.5191 0.5139 

5 0.4 0.5170 0.5142 0.5231 0.5198 

10 0.01 0.5989 0.7085 0.6659 0.7076 

10 0.05 0.5145 0.5426 0.5255 0.5357 

10 0.1 0.5050 0.5554 0.5415 0.5073 

10 0.2 0.5118 0.5210 0.5169 0.5104 

10 0.3 0.5055 0.5 0.5046 0.5143 

10 0.4 0.5018 0.5051 0.5125 0.5166 

20 0.01 0.5002 0.5794 0.5744 0.5785 

20 0.05 0.5078 0.5309 0.5133 0.5124 

20 0.1 0.5069 0.5185 0.5087 0.5050 

20 0.2 0.5018 0.5254 0.5064 0.5013 

20 0.3 0.5023 0.5092 0.5041 0.5217 

20 0.4 0.5027 0.5041 0.5101 0.5018 
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4- Conclusion
This work presented a heuristic algorithm for solving the 

haplotype assembly problem in diplids, consisting of two 
phases, a quick partitioning phase, and a refinement phase. 
The first phase involved defining a fragment compatibility 
vector ( fc ) and introducing the Clustering Rate (CR) as a 
new criterion. The proposed approach utilized an iterative 
process in which many fragments are clustered using fc  in 
each iteration, and a partial haplotype was gradually expanded 
to maximize CR. During the second phase, reconstructed 
haplotypes were refined to obtain the lowest MEC score 

possible. The results of this study demonstrate that the 
proposed method is capable of reconstructing haplotypes 
with a high degree of speed and accuracy, particularly for 
high-coverage sequencing data. 
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