
AUT Journal of Electrical Engineering

AUT J. Electr. Eng., 55(2) (2023) 191-206
DOI: 10.22060/eej.2023.22434.5543

A rapid heuristic algorithm to solve the single individual haplotype assembly problem
Melina Bagher , Reza Karimzadeh , Mehran Jahed* , Babak Hossein Khalaj

Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran

ABSTRACT: The Haplotype Assembly is the computational process in which two distinct nucleotide
sequences of chromosomes are reconstructed using the sequencing reads of an individual. The ability to
identify haplotypes provides many benefits for future genomic-based studies to be conducted in many
areas, such as drug design, population study, and disease diagnosis. Even though several approaches
have been put out to achieve highly accurate haplotypes, the problem of quick and precise haplotype
assembly remains a challenging task. Due to the enormous bulk of the high-throughput sequencing
data, algorithm speed plays a crucial role in the possibility of haplotype assembly in the human genome
dimension. This study introduces a heuristic technique that enables rapid haplotype reconstruction while
maintaining respectable accuracy. Our approach is divided into two parts. In the first, a partial haplotype
is created and enlarged over a number of iterations. We have employed a novel metric to assess the
reconstructed haplotype’s quality in each iteration to arrive at the optimal answer. The second stage of
the algorithm involves refining the reconstructed haplotypes to increase their accuracy. The outcome
reveals that the suggested approach is capable of reconstructing the haplotypes with an acceptable level
of accuracy. In terms of speed, the performance of the algorithm surpasses the competing approaches,
especially in the case of high-coverage sequencing data.

Review History:

Received: Jun. 19, 2023
Revised: Aug. 07, 2023
Accepted: Aug. 08, 2023
Available Online: Oct. 01, 2023

Keywords:

Haplotype reconstruction

Single nucleotide polymorphism

Haplotype assembly

Fragment

Sequencing

191

1- Introduction
The genome of humans and other diploid species contains

two homologous sets of chromosomes: a mother-inherited
set and a father-inherited set. It has been discovered that
the genome sequences of every two people are 99.5 percent
identical, and variants in less than 1% of the genome play
a major role in phenotypic variation and human disease [1].
Single nucleotide polymorphisms (SNPs) are sites in genome
sequence where one DNA base differs between individuals [1,
2]. The term haplotype refers to a group of SNPs located on a
distinct chromosome. The determination of haplotypes offers
many advantages for genomic-based studies, like medical
research, drug design, disease diagnosis, evolution studies, and
population studies [3]. It is highly preferred to use computer
algorithms to infer haplotypes since experimental methods
are labor-intensive and time-consuming. Although this study
focuses on diploid species, some groups of amphibians and
food plants are included in the category of polyploid species,
whose haplotype reconstruction has recently been considered
in several articles [4, 5].

Due to the inability of current sequencing technologies
to read an entire chromosome consecutively, the input data
for the computational haplotype assembly problem are a

collection of numerous short reads of DNA fragments. As
each fragment is derived from one of the unknown haplotypes,
the haplotype assembly task in diploids is to divide all these
fragments into two subsets and obtain the corresponding two
haplotypes. Under the assumption that all reads are noiseless,
we can assemble the two original sequences by exploiting the
overlaps between fragments. However, in practice, gaps and
errors make this problem more challenging and complicated.
A unique and correct genome assembly is guaranteed by
two necessary and sufficient conditions for noiseless data.
Firstly, the SNP coverage condition indicates that every SNP
position should be covered by at least one fragment from each
chromosome. Next, the Bridging condition states that every
identical region between two chromosomes must be bridged
by at least one fragment from either of the chromosomes
[6]. Consequently, long-read data are needed to solve the
haplotype assembly problem. As sequencing technologies
advance, longer reads will be generated. There have already
been several hundred kilobases read lengths achieved by
third-generation sequencing technologies, including PacBio
(Pacific Bio-Sciences) [7, 8] and ONT (Oxford Nanopore
Technology) [9], While the largest fragments produced by
second-generation sequencing technology are just 400 base
pairs long [10]. However, lengthening fragments results in
additional reading sequence errors. To lessen the impact of

*Corresponding author’s email: jahed@sharif.edu

 Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article
 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

https://dx.doi.org/10.22060/eej.2023.22434.5543
https://orcid.org/0009-0005-1185-249X
https://orcid.org/0000-0003-0911-367X
https://orcid.org/0000-0002-0417-0272
https://orcid.org/0000-0002-9289-2338

M. Bagher et al., AUT J. Electr. Eng., 54(2) (2023) 191-206, DOI: 10.22060/eej.2023.22434.5543

192

mistakes in haplotype assembly, it is critical to enhance data
coverage. The requirement for fast algorithms is highlighted
by this enormous quantity of fragments and the length of the
human genome sequence. There are several models used for
this purpose, the most well-known of which are Minimum
SNP Removal (MSR) [11], Minimum Fragment Removal
(MFR) [11], and Minimum Error Correction (MEC) [12]. In
several recent algorithms [13-16], MEC has been applied as
the most complex but most efficient model. This model seeks
to divide the collection of fragments into two subsets with the
fewest changes to the SNP values. Due to the NP-Hard nature
of MEC and other models, some solutions take advantage of
heuristic techniques by exchanging MEC score for rapidity.
There are also several other proposed algorithms that have
recently adopted strategies, such as matrix completion, to
solve the haplotype assembly problem [17-19].

One of the earliest rapid heuristic methods to solve the
haplotype assembly problem was the FastHare algorithm,
presented by Panconesi and Sozio [20]. In this approach, the
first aligned fragment is used to rebuild two partial haplotypes,
and further fragments are allocated to one of the haplotypes
depending on a given distance. There are a number of methods
that make use of graphs with fragments as their vertices and
distances or similarities between fragments as their edges. In
other words, a measure like a similarity needs to be calculated
between each pair of fragments, and the calculation cost
relies on the number of reads. SSK, introduced by Xin-Shun
Xu and Ying-Xin Li [21], is an instance of these methods.
The first phase of this semi-supervised clustering method
involves computing the similarity between each pair of
fragments. Afterward, phase 2 utilizes some beneficial results
gathered from phase 1 to aid k-means in clustering all the
reads. A further heuristic technique called Fasthap [22] uses
a fuzzy conflict graph of reads to create a preliminary split
of the fragments according to differences between every two
fragments; later, it refines the original grouping to improve
the MEC score. Several additional methods are based on the
fuzzy conflict graph that Fasthap first developed [23, 24].
As an example, FCMHap [23] infers two haplotypes from a
fuzzy conflict graph and utilizes them as the starting centers
of clustering for fuzzy c-means (FCM). A great deal of time is
spent creating such a graph in the aforementioned approaches
and any other novel methods that utilize a pairwise distance
between fragments.

In this study, we present a heuristic algorithm that achieves
a high speed of haplotype assembly while maintaining an
acceptable MEC score. In contrast to the previous methods,
this method does not require calculating the distance between
all pairs of fragments, but partial haplotypes are constructed
based on a large number of fragments in each iteration, so
it accelerates convergence and brings about a reduction in
computational cost.

This paper has a structure as follows: Section 2 presents a
brief definition of the haplotype assembly problem, followed
by a discussion of the problem formulation, our approach, and
evaluation metrics. In section 3, a description of the dataset
and materials is provided, and then the results are discussed.

Lastly, the conclusion of the study is presented in section 4.

2- Materials and Methods
2- 1- Problem definition

As mentioned before, a set of reads provides the input to
the haplotype assembly problem. A sequence aligner is used
to map the reads to a reference genome before beginning any
haplotype assembly method. Once the loci of heterozygous
variants are identified, they are written into an m × n variant
matrix, where m and n are the numbers of reads and SNPs,
respectively. The haplotype assembly task involves clustering
reads into two groups and determining the consensus
sequences for each group to reconstruct the haplotypes.
Fig. 1 illustrates how a haplotype can be reconstructed from
noiseless fragments.

It is currently impossible for any of the high throughput
sequencing technologies to produce error-free reads; therefore,
the corresponding SNP matrix would not be bipartisan. It is
necessary to consider some components of the SNP matrix
to be errors and flip them to produce a bipartisan matrix. To
evaluate the efficiency of different algorithms, the number of
these error corrections is reported as the MEC measure. As
previously stated, attaining the minimum of this metric is an
NP-hard task; hence heuristic methods are preferable.

2- 2- Formulation and proposed method
Suppose M is an input SNP fragment matrix of size
 m n× , where the rows represent fragments, the columns

represent SNP sites, and its values are { }0,1, 1ijm ∈ − . In
this study, each matrix member ijm is assigned one of the
integers 1, -1 or 0, depending on whether the thi site of the

thj read corresponds to the most frequent allele, the rare one
in the thi column, or a gap, respectively. The procedure of
constructing matrix M is depicted in Fig. 2. An approximate
haplotype is represented by { }21 , , ˆĤ h h= where () 1k̂ nh × is a
vector in which { }1ˆ 1,kjh ∈ − and the subscript k is assigned
the values ​​1 or 2, indicating whether k̂h is the first or second
haplotype. 1̂h and  2 h are randomly initialized with the
condition that 1 2

ˆ ˆ
j jh h= − . To measure the compatibility

between reads and each estimated haplotype k̂h , we have
created a vector namely fragment compatibility (fc) by:

𝑓𝑓𝑓𝑓 𝑘𝑘 = 𝑀𝑀 × ℎ̂𝑘𝑘
𝑇𝑇 = [

𝛿𝛿1
𝛿𝛿2
⋮
𝛿𝛿𝑚𝑚
] (1)

𝛿𝛿𝑖𝑖 =∑𝑚𝑚𝑖𝑖𝑖𝑖. ℎ̂𝑘𝑘

𝑛𝑛

𝑗𝑗=1
= 𝑓𝑓𝑖𝑖. ℎ̂𝑘𝑘

 (2)

𝐶𝐶𝐶𝐶𝑘𝑘 =
∑ |∑ 𝑚𝑚𝑖𝑖𝑖𝑖 ℎ̂𝑘𝑘𝑗𝑗

 𝑛𝑛
𝑗𝑗=1 |𝑚𝑚

𝑖𝑖=1

∑ ∑ |𝑚𝑚𝑖𝑖𝑖𝑖|
2𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1

=
‖𝑀𝑀 × ℎ̂𝑘𝑘

𝑇𝑇 ‖
1

‖𝑀𝑀‖𝐹𝐹2
 (3)

𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶1 + 𝐶𝐶𝐶𝐶22 (4)

 ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 =

{

∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖
|∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 |

 ∑ 𝑐𝑐𝑖𝑖𝑖𝑖
𝑖𝑖

≠ 0

 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (5)

ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 = {
+1 𝑛𝑛1(𝑗𝑗) > 𝑛𝑛−1(𝑗𝑗)
−1 𝑛𝑛1(𝑗𝑗) < 𝑛𝑛−1(𝑗𝑗)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (6)

𝑑𝑑(𝑥𝑥, 𝑦𝑦) = {1 𝑖𝑖𝑖𝑖 𝑥𝑥 ≠ 𝑦𝑦 & x, 𝑦𝑦 ∈ {1,−1}
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (7)

 (1)

Where iδ is the thi component of fc and indicates the
compatibility between { }1 2, ;..., i i inm m m=if and determined
the haplotype k̂h as follows:

𝑓𝑓𝑓𝑓 𝑘𝑘 = 𝑀𝑀 × ℎ̂𝑘𝑘
𝑇𝑇 = [

𝛿𝛿1
𝛿𝛿2
⋮
𝛿𝛿𝑚𝑚
] (1)

𝛿𝛿𝑖𝑖 =∑𝑚𝑚𝑖𝑖𝑖𝑖. ℎ̂𝑘𝑘

𝑛𝑛

𝑗𝑗=1
= 𝑓𝑓𝑖𝑖. ℎ̂𝑘𝑘

 (2)

𝐶𝐶𝐶𝐶𝑘𝑘 =
∑ |∑ 𝑚𝑚𝑖𝑖𝑖𝑖 ℎ̂𝑘𝑘𝑗𝑗

 𝑛𝑛
𝑗𝑗=1 |𝑚𝑚

𝑖𝑖=1

∑ ∑ |𝑚𝑚𝑖𝑖𝑖𝑖|
2𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1

=
‖𝑀𝑀 × ℎ̂𝑘𝑘

𝑇𝑇 ‖
1

‖𝑀𝑀‖𝐹𝐹2
 (3)

𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶1 + 𝐶𝐶𝐶𝐶22 (4)

 ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 =

{

∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖
|∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 |

 ∑ 𝑐𝑐𝑖𝑖𝑖𝑖
𝑖𝑖

≠ 0

 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (5)

ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 = {
+1 𝑛𝑛1(𝑗𝑗) > 𝑛𝑛−1(𝑗𝑗)
−1 𝑛𝑛1(𝑗𝑗) < 𝑛𝑛−1(𝑗𝑗)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (6)

𝑑𝑑(𝑥𝑥, 𝑦𝑦) = {1 𝑖𝑖𝑖𝑖 𝑥𝑥 ≠ 𝑦𝑦 & x, 𝑦𝑦 ∈ {1,−1}
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (7)

 (2)

M. Bagher et al., AUT J. Electr. Eng., 54(2) (2023) 191-206, DOI: 10.22060/eej.2023.22434.5543

193

Fig. 1. A demonstration of a haplotype assembly process using error-free fragments

Fig. 1. A demonstration of a haplotype assembly process using error-free fragments

Fig. 2. The procedure of constructing the numeric matrix from SNP fragments

Fig. 2. The procedure of constructing the numeric matrix from SNP fragments

M. Bagher et al., AUT J. Electr. Eng., 54(2) (2023) 191-206, DOI: 10.22060/eej.2023.22434.5543

194

In Fig. 3 an example has been provided that depicts Eq.1
and 2 in a practical context. When iδ (absolute value of

iδ) is large, it indicates that the fragment if has a high
probability of being compatible with either of the two
determined haplotypes, which makes it easier to cluster. In
other words, as iδ becomes more positive, the probability
that if will be related to 1̂h is increased. On the other hand,
as iδ becomes more negative, the probability that if will be
related to another haplotype 2̂h is increased, and therefore it
can be deduced that 1 2

ˆ ˆ
j jh h= − . In the case of a zero value

of iδ , you can consider the problem as being a case that if
cannot be grouped into either 1̂h or 2ĥ .

Our presented algorithm, which we’ve called QuickHap,
comprises two main phases: the first is the quick partitioning
stage, and the second is the refinement stage. The flowchart
in Fig. 4 depicts the different stages of the algorithm in great
detail. The first phase begins with the construction of an
approximate preliminary haplotype, which is then iteratively
expanded utilizing a lot of fragments at each cycle. To put it
another way, in each iteration, a lot of fragments are clustered
using the fragment compatibility vector. In this paper, we
present a new metric, Clustering Rate (CR), which assesses
the validity of the reassembled haplotype and is defined as
follows:

𝑓𝑓𝑓𝑓 𝑘𝑘 = 𝑀𝑀 × ℎ̂𝑘𝑘
𝑇𝑇 = [

𝛿𝛿1
𝛿𝛿2
⋮
𝛿𝛿𝑚𝑚
] (1)

𝛿𝛿𝑖𝑖 =∑𝑚𝑚𝑖𝑖𝑖𝑖. ℎ̂𝑘𝑘

𝑛𝑛

𝑗𝑗=1
= 𝑓𝑓𝑖𝑖. ℎ̂𝑘𝑘

 (2)

𝐶𝐶𝐶𝐶𝑘𝑘 =
∑ |∑ 𝑚𝑚𝑖𝑖𝑖𝑖 ℎ̂𝑘𝑘𝑗𝑗

 𝑛𝑛
𝑗𝑗=1 |𝑚𝑚

𝑖𝑖=1

∑ ∑ |𝑚𝑚𝑖𝑖𝑖𝑖|
2𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1

=
‖𝑀𝑀 × ℎ̂𝑘𝑘

𝑇𝑇 ‖
1

‖𝑀𝑀‖𝐹𝐹2
 (3)

𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶1 + 𝐶𝐶𝐶𝐶22 (4)

 ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 =

{

∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖
|∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 |

 ∑ 𝑐𝑐𝑖𝑖𝑖𝑖
𝑖𝑖

≠ 0

 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (5)

ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 = {
+1 𝑛𝑛1(𝑗𝑗) > 𝑛𝑛−1(𝑗𝑗)
−1 𝑛𝑛1(𝑗𝑗) < 𝑛𝑛−1(𝑗𝑗)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (6)

𝑑𝑑(𝑥𝑥, 𝑦𝑦) = {1 𝑖𝑖𝑖𝑖 𝑥𝑥 ≠ 𝑦𝑦 & x, 𝑦𝑦 ∈ {1,−1}
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (7)

 (3)

𝑓𝑓𝑓𝑓 𝑘𝑘 = 𝑀𝑀 × ℎ̂𝑘𝑘
𝑇𝑇 = [

𝛿𝛿1
𝛿𝛿2
⋮
𝛿𝛿𝑚𝑚
] (1)

𝛿𝛿𝑖𝑖 =∑𝑚𝑚𝑖𝑖𝑖𝑖. ℎ̂𝑘𝑘

𝑛𝑛

𝑗𝑗=1
= 𝑓𝑓𝑖𝑖. ℎ̂𝑘𝑘

 (2)

𝐶𝐶𝐶𝐶𝑘𝑘 =
∑ |∑ 𝑚𝑚𝑖𝑖𝑖𝑖 ℎ̂𝑘𝑘𝑗𝑗

 𝑛𝑛
𝑗𝑗=1 |𝑚𝑚

𝑖𝑖=1

∑ ∑ |𝑚𝑚𝑖𝑖𝑖𝑖|
2𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1

=
‖𝑀𝑀 × ℎ̂𝑘𝑘

𝑇𝑇 ‖
1

‖𝑀𝑀‖𝐹𝐹2
 (3)

𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶1 + 𝐶𝐶𝐶𝐶22 (4)

 ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 =

{

∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖
|∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 |

 ∑ 𝑐𝑐𝑖𝑖𝑖𝑖
𝑖𝑖

≠ 0

 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (5)

ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 = {
+1 𝑛𝑛1(𝑗𝑗) > 𝑛𝑛−1(𝑗𝑗)
−1 𝑛𝑛1(𝑗𝑗) < 𝑛𝑛−1(𝑗𝑗)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (6)

𝑑𝑑(𝑥𝑥, 𝑦𝑦) = {1 𝑖𝑖𝑖𝑖 𝑥𝑥 ≠ 𝑦𝑦 & x, 𝑦𝑦 ∈ {1,−1}
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (7)

 (4)

This measure always returns a number between 0 and
1. If haplotypes 1ĥ and 2ĥ are defined in such a way that
all fragments fit well into one of the two haplotypes, this
number will be closer to 1. In the case of noiseless data,
when haplotypes are accurately determined, this number
attains 1. As the fragments and haplotypes become further
incompatible, that is, as fragments do not fit any of the two
haplotypes, this value will tend towards 0.

The first step of the process is to select the fragment
with the most compatibility value with the starting h1 to be
used as the new h1. Every iteration involves a clustering
process where fragments with positive compatibility value
are gathered into C1 (group of h1-related fragments), and
fragments with negative value are clustered into C2 (group
of h2-related fragments). Thereafter, for each cluster C,
members are used to create related _h new as follows:

𝑓𝑓𝑓𝑓 𝑘𝑘 = 𝑀𝑀 × ℎ̂𝑘𝑘
𝑇𝑇 = [

𝛿𝛿1
𝛿𝛿2
⋮
𝛿𝛿𝑚𝑚
] (1)

𝛿𝛿𝑖𝑖 =∑𝑚𝑚𝑖𝑖𝑖𝑖. ℎ̂𝑘𝑘

𝑛𝑛

𝑗𝑗=1
= 𝑓𝑓𝑖𝑖. ℎ̂𝑘𝑘

 (2)

𝐶𝐶𝐶𝐶𝑘𝑘 =
∑ |∑ 𝑚𝑚𝑖𝑖𝑖𝑖 ℎ̂𝑘𝑘𝑗𝑗

 𝑛𝑛
𝑗𝑗=1 |𝑚𝑚

𝑖𝑖=1

∑ ∑ |𝑚𝑚𝑖𝑖𝑖𝑖|
2𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1

=
‖𝑀𝑀 × ℎ̂𝑘𝑘

𝑇𝑇 ‖
1

‖𝑀𝑀‖𝐹𝐹2
 (3)

𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶1 + 𝐶𝐶𝐶𝐶22 (4)

 ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 =

{

∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖
|∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 |

 ∑ 𝑐𝑐𝑖𝑖𝑖𝑖
𝑖𝑖

≠ 0

 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (5)

ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 = {
+1 𝑛𝑛1(𝑗𝑗) > 𝑛𝑛−1(𝑗𝑗)
−1 𝑛𝑛1(𝑗𝑗) < 𝑛𝑛−1(𝑗𝑗)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (6)

𝑑𝑑(𝑥𝑥, 𝑦𝑦) = {1 𝑖𝑖𝑖𝑖 𝑥𝑥 ≠ 𝑦𝑦 & x, 𝑦𝑦 ∈ {1,−1}
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (7)

 (5)

If we assume C1 and C2 as two newly separated matrices,
for each matrix, ijc is the thj SNP of thi fragment
belonging to Cluster C and _ jh new is the thj SNP of the
related haplotype _h new . Eq. 5 is a voting process that can
be rewritten as below:

𝑓𝑓𝑓𝑓 𝑘𝑘 = 𝑀𝑀 × ℎ̂𝑘𝑘
𝑇𝑇 = [

𝛿𝛿1
𝛿𝛿2
⋮
𝛿𝛿𝑚𝑚
] (1)

𝛿𝛿𝑖𝑖 =∑𝑚𝑚𝑖𝑖𝑖𝑖. ℎ̂𝑘𝑘

𝑛𝑛

𝑗𝑗=1
= 𝑓𝑓𝑖𝑖. ℎ̂𝑘𝑘

 (2)

𝐶𝐶𝐶𝐶𝑘𝑘 =
∑ |∑ 𝑚𝑚𝑖𝑖𝑖𝑖 ℎ̂𝑘𝑘𝑗𝑗

 𝑛𝑛
𝑗𝑗=1 |𝑚𝑚

𝑖𝑖=1

∑ ∑ |𝑚𝑚𝑖𝑖𝑖𝑖|
2𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1

=
‖𝑀𝑀 × ℎ̂𝑘𝑘

𝑇𝑇 ‖
1

‖𝑀𝑀‖𝐹𝐹2
 (3)

𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶1 + 𝐶𝐶𝐶𝐶22 (4)

 ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 =

{

∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖
|∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 |

 ∑ 𝑐𝑐𝑖𝑖𝑖𝑖
𝑖𝑖

≠ 0

 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (5)

ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 = {
+1 𝑛𝑛1(𝑗𝑗) > 𝑛𝑛−1(𝑗𝑗)
−1 𝑛𝑛1(𝑗𝑗) < 𝑛𝑛−1(𝑗𝑗)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (6)

𝑑𝑑(𝑥𝑥, 𝑦𝑦) = {1 𝑖𝑖𝑖𝑖 𝑥𝑥 ≠ 𝑦𝑦 & x, 𝑦𝑦 ∈ {1,−1}
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (7)

 (6)

Fig. 3. An example of calculating 𝑓𝑓𝑓𝑓 from the estimated ℎ̂1 in a simple noisy fragment matrix

Fig. 3. An example of calculating fc from the estimated h ̂_1 in a simple noisy fragment matrix

M. Bagher et al., AUT J. Electr. Eng., 54(2) (2023) 191-206, DOI: 10.22060/eej.2023.22434.5543

195

Fig. 4. Flowchart of the proposed approach

Fig. 4. Flowchart of the proposed approach

M. Bagher et al., AUT J. Electr. Eng., 54(2) (2023) 191-206, DOI: 10.22060/eej.2023.22434.5543

196

Where ()1n j is the number of fragments whose thj
element is 1, and ()1 n j− represents the number of
fragments with thj SNP of -1. As a final step of phase 1,
The CR of both 1_h new and 2 _h new are recalculated; if
the enhancement in CR is considerable, the entire procedure
is repeated.

Two clustered groups of fragments from the first
stage’s output are used as the second stage’s input. The
second stage is carried out in accordance with the Fasthap
method’s refinement phase; MEC Scores are calculated for
approximated clusters and haplotypes, and the fragments
with the greatest variations within their group are shifted to
the other set. This phase is repeated as long as a decrease
in the MEC error occurs during the process. A formula for
calculating MEC is provided below in the section devoted to
evaluation.

2- 3- Performance evaluation
To assess the performance of the algorithm, A number

of measurements have been computed, including MEC,
the execution time, and the Reconstruction Rate (RR). As
previously stated, the MEC score refers to the minimum
number of SNP alterations necessary to divide the variation
matrix into two haplotype-specific submatrices. The
following formula is used to obtain the MEC score:

𝑓𝑓𝑓𝑓 𝑘𝑘 = 𝑀𝑀 × ℎ̂𝑘𝑘
𝑇𝑇 = [

𝛿𝛿1
𝛿𝛿2
⋮
𝛿𝛿𝑚𝑚
] (1)

𝛿𝛿𝑖𝑖 =∑𝑚𝑚𝑖𝑖𝑖𝑖. ℎ̂𝑘𝑘

𝑛𝑛

𝑗𝑗=1
= 𝑓𝑓𝑖𝑖. ℎ̂𝑘𝑘

 (2)

𝐶𝐶𝐶𝐶𝑘𝑘 =
∑ |∑ 𝑚𝑚𝑖𝑖𝑖𝑖 ℎ̂𝑘𝑘𝑗𝑗

 𝑛𝑛
𝑗𝑗=1 |𝑚𝑚

𝑖𝑖=1

∑ ∑ |𝑚𝑚𝑖𝑖𝑖𝑖|
2𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1

=
‖𝑀𝑀 × ℎ̂𝑘𝑘

𝑇𝑇 ‖
1

‖𝑀𝑀‖𝐹𝐹2
 (3)

𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶1 + 𝐶𝐶𝐶𝐶22 (4)

 ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 =

{

∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖
|∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 |

 ∑ 𝑐𝑐𝑖𝑖𝑖𝑖
𝑖𝑖

≠ 0

 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (5)

ℎ_𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 = {
+1 𝑛𝑛1(𝑗𝑗) > 𝑛𝑛−1(𝑗𝑗)
−1 𝑛𝑛1(𝑗𝑗) < 𝑛𝑛−1(𝑗𝑗)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (6)

𝑑𝑑(𝑥𝑥, 𝑦𝑦) = {1 𝑖𝑖𝑖𝑖 𝑥𝑥 ≠ 𝑦𝑦 & x, 𝑦𝑦 ∈ {1,−1}
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (7)

 (7)

𝐻𝐻𝐻𝐻(𝑓𝑓, ℎ) = ∑ 𝑑𝑑(𝑓𝑓𝑗𝑗, ℎ𝑗𝑗)𝑛𝑛
𝑗𝑗=1 (8)

𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐻𝐻𝐻𝐻(𝑓𝑓𝑖𝑖, ℎ̂1), 𝐻𝐻𝐻𝐻(𝑓𝑓𝑖𝑖, ℎ̂2)}𝑚𝑚
𝑖𝑖=1 (9)

𝑅𝑅𝑅𝑅 = 1 − min{𝐻𝐻𝐻𝐻(ℎ1, ℎ̂1) + 𝐻𝐻𝐻𝐻(ℎ2, ℎ̂2), 𝐻𝐻𝐻𝐻(ℎ1, ℎ̂2) + 𝐻𝐻𝐻𝐻(ℎ2, ℎ̂1)}
2𝑛𝑛 (10)

 (8)

𝐻𝐻𝐻𝐻(𝑓𝑓, ℎ) = ∑ 𝑑𝑑(𝑓𝑓𝑗𝑗, ℎ𝑗𝑗)𝑛𝑛
𝑗𝑗=1 (8)

𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐻𝐻𝐻𝐻(𝑓𝑓𝑖𝑖, ℎ̂1), 𝐻𝐻𝐻𝐻(𝑓𝑓𝑖𝑖, ℎ̂2)}𝑚𝑚
𝑖𝑖=1 (9)

𝑅𝑅𝑅𝑅 = 1 − min{𝐻𝐻𝐻𝐻(ℎ1, ℎ̂1) + 𝐻𝐻𝐻𝐻(ℎ2, ℎ̂2), 𝐻𝐻𝐻𝐻(ℎ1, ℎ̂2) + 𝐻𝐻𝐻𝐻(ℎ2, ℎ̂1)}
2𝑛𝑛 (10)

 (9)

The RR will be helpful if the actual haplotypes are known,
and the ground truth is accessible. In our research, the real
haplotypes were accessible to us via the data simulation.
If { }1 2 ,H h h= are the accurate haplotypes, the correctness
of the approximated haplotypes { }21̂

ˆ , H h h= would be
described by RR as follows:

𝐻𝐻𝐻𝐻(𝑓𝑓, ℎ) = ∑ 𝑑𝑑(𝑓𝑓𝑗𝑗, ℎ𝑗𝑗)𝑛𝑛
𝑗𝑗=1 (8)

𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐻𝐻𝐻𝐻(𝑓𝑓𝑖𝑖, ℎ̂1), 𝐻𝐻𝐻𝐻(𝑓𝑓𝑖𝑖, ℎ̂2)}𝑚𝑚
𝑖𝑖=1 (9)

𝑅𝑅𝑅𝑅 = 1 − min{𝐻𝐻𝐻𝐻(ℎ1, ℎ̂1) + 𝐻𝐻𝐻𝐻(ℎ2, ℎ̂2), 𝐻𝐻𝐻𝐻(ℎ1, ℎ̂2) + 𝐻𝐻𝐻𝐻(ℎ2, ℎ̂1)}
2𝑛𝑛 (10)

 (10)

3- Validation.
3- 1- Dataset and setup

The read sequences have been simulated utilizing PBSIM,
which is a simulator for PacBio sequencing reads [25, 26]. The
synthetic (yet realistic) sequencing reads were derived from
the APP gene of chromosome 21 of the GRCh38 reference

genome [27], and random SNPs were inserted. From the output
FASTQ files generated as a result of PBSIM, the BAM and
VCF files were extracted, and fragment files were generated
using the ExtractHairs program [28, 29]. Simulations were
performed using various parameter combinations such as
coverage { } 5,1 0, 20C = , read length { } 5, 7.5,1 0,1 5, 20, 25L =
kbp, and error rate { } 0.01, 0.05, 0.1, 0.2, 0.3, 0.4e = . The
experiments were conducted on an Intel Core i7 processor
running 2.6 GHz with 16GB of RAM.

3- 2- Results
QuickHAP is compared in this experiment with several

state-of-the-art methods, including SSK, FastHAP, and
FCMHAP, which are based on fuzzy conflict graphs of
fragments. The impact of error rate on the efficiency of
various algorithms is depicted in Fig. 5. In this graph, the
average MEC Score for every method is plotted against its
error rate. The MEC cost of our approach QuickHap, as
can be seen, is below the MEC of SSK and FCMHap by a
considerable margin for all error rates and engages in rivalry
with the FASTHap method.

The average MEC costs for the algorithms are plotted
versus coverage and read length in Figs. 6 and 7, respectively,
providing a comparison in which, just like in Fig. 5, FastHap
is the only algorithm to compete with QuickHap.

Since there is no ground truth in the haplotype assembly
problem on the actual data, the MEC criterion is considered
as the most useful measure for comparing the performance
of the haplotype assembly algorithms. Still, since it has been
proven in some articles that a lower MEC criterion does not
necessarily mean a higher accuracy [30], another measure,
namely RR is evaluated in our study, which is mainly
applicable to the simulated data.

In Figures 8, 9, and 10, the average RRs are plotted
against the error rate, coverage, and read length, respectively.
The bar graphs reveal that QuickHap, FCMHap, and FastHap
are competing, particularly with increasing error rates.

The average time of execution for various error rates,
coverages, and read lengths are presented in Fig. 11, 12, and
13, respectively. This study demonstrates that the algorithms’
execution times get shorter as the read length grows; this is
because longer reads of data with fixed coverage result in
fewer fragments and faster analysis. It is worth to note that
in all graphs, QuickHAP’s average execution time is shorter
than that of the other three techniques.

By taking a closer look at the bar charts, it can be
concluded that when measuring method performance based
on MEC cost, FastHap and QuickHap are in competition, and
if Reconstruction Rate is taken into account as a criterion of
accuracy, FCMHap, FastHAP, and QuickHap are roughly on
par. Additionally, in our proposed approach, we have observed
an improvement in average execution time almost across all
error rates, coverages, and read lengths. To allow for a more
detailed analysis of the result, Tables 1-3 are provided for
data with a read length of 5000.

The MEC cost of algorithms across different coverage
and error rate combinations are listed in Table 1, and the best

M. Bagher et al., AUT J. Electr. Eng., 54(2) (2023) 191-206, DOI: 10.22060/eej.2023.22434.5543

197

Fig. 5. The average MEC costs of the algorithms versus error rate

Fig. 5. The average MEC costs of the algorithms versus error rate

Fig. 6. The average MEC costs of the algorithms versus coverage

Fig. 6. The average MEC costs of the algorithms versus coverage

M. Bagher et al., AUT J. Electr. Eng., 54(2) (2023) 191-206, DOI: 10.22060/eej.2023.22434.5543

198

Fig. 7. The average MEC cost of the algorithms versus read length

Fig. 7. The average MEC cost of the algorithms versus read length

Fig. 8. Average RR of the algorithms versus error rate

Fig. 8. Average RR of the algorithms versus error rate

M. Bagher et al., AUT J. Electr. Eng., 54(2) (2023) 191-206, DOI: 10.22060/eej.2023.22434.5543

199

Fig. 9. Average RR of the algorithms versus coverage

Fig. 9. Average RR of the algorithms versus coverage

Fig. 10. Average RR of the algorithms versus read length

Fig. 10. Average RR of the algorithms versus read length

M. Bagher et al., AUT J. Electr. Eng., 54(2) (2023) 191-206, DOI: 10.22060/eej.2023.22434.5543

200

Fig. 12. Average execution time of the algorithms versus coverage

Fig. 12. Average execution time of the algorithms versus coverage

Fig. 11. Average execution time of the algorithms versus error rate

Fig. 11. Average execution time of the algorithms versus error rate

M. Bagher et al., AUT J. Electr. Eng., 54(2) (2023) 191-206, DOI: 10.22060/eej.2023.22434.5543

201

Fig. 13. Average execution time of the algorithms versus read length

Fig. 13. Average execution time of the algorithms versus read length

Table 1. A comparison of MEC costs based on coverage and error rateTable 1. A comparison of MEC costs based on coverage and error rate

C e SSK FastHap FCMHap Quickhap

5 0.01 424 456 1280 390

5 0.05 1904 1484 4083 1476

5 0.1 3340 2663 5453 2637

5 0.2 4899 4476 6936 4493

5 0.3 6309 5995 7323 6202

5 0.4 7029 6720 7327 6982

10 0.01 1240 870 4350 870

10 0.05 3828 2999 11748 3129

10 0.1 6543 5193 14572 5360

10 0.2 10878 9495 16105 9450

10 0.3 13882 13361 16720 13977

10 0.4 16102 15621 16764 15733

20 0.01 3161 2069 14782 2304

20 0.05 9228 6923 29837 7494

20 0.1 13605 11497 33967 12003

20 0.2 21241 19352 35547 20323

20 0.3 29726 28079 35971 28792

20 0.4 34856 33807 36188 34022

M. Bagher et al., AUT J. Electr. Eng., 54(2) (2023) 191-206, DOI: 10.22060/eej.2023.22434.5543

202

outcomes in each row are highlighted in bold.
Table 2 details the average RRs of the algorithms in

various error rates and coverages. The highest value in
each row is highlighted in bold. As can be seen, QuickHap
frequently competes with FastHAP and FCMHap, sometimes
even surpassing them.

Table 3 demonstrates the details of the algorithm’s
performance in terms of speed for different coverages and
error rates. According to the running time values, QuickHap
is the most rapid algorithm in almost all cases. This
superiority in speed is particularly more evident in data with
high coverage.

According to the obtained results, the proposed algorithm
can solve the haplotype reconstruction problem for almost
all inputs with the highest speed and acceptable accuracy. As
stated earlier, SSK, FastHap, and FCMHap are based on a
distance calculation between each pair of reads. Therefore,
these methods have the drawback of slowing down the
reconstruction process when increasing coverage and the
number of fragments. Based on the results of our speed
analysis, we can conclude that the proposed algorithm is
capable of reconstructing haplotypes at a promising speed,
particularly when dealing with high-coverage sequencing
data.

Table 2. A comparison of RR based on coverage and error rateTable 2. A comparison of RR based on coverage and error rate

C e SSK FastHap FCMHap Quickhap

5 0.01 0.9142 0.9178 0.8916 0.9220

5 0.05 0.5234 0.5345 0.5136 0.5187

5 0.1 0.5317 0.5317 0.5438 0.5638

5 0.2 0.5069 0.5163 0.5069 0.5228

5 0.3 0.5139 0.5130 0.5191 0.5139

5 0.4 0.5170 0.5142 0.5231 0.5198

10 0.01 0.5989 0.7085 0.6659 0.7076

10 0.05 0.5145 0.5426 0.5255 0.5357

10 0.1 0.5050 0.5554 0.5415 0.5073

10 0.2 0.5118 0.5210 0.5169 0.5104

10 0.3 0.5055 0.5 0.5046 0.5143

10 0.4 0.5018 0.5051 0.5125 0.5166

20 0.01 0.5002 0.5794 0.5744 0.5785

20 0.05 0.5078 0.5309 0.5133 0.5124

20 0.1 0.5069 0.5185 0.5087 0.5050

20 0.2 0.5018 0.5254 0.5064 0.5013

20 0.3 0.5023 0.5092 0.5041 0.5217

20 0.4 0.5027 0.5041 0.5101 0.5018

M. Bagher et al., AUT J. Electr. Eng., 54(2) (2023) 191-206, DOI: 10.22060/eej.2023.22434.5543

203

4- Conclusion
This work presented a heuristic algorithm for solving the

haplotype assembly problem in diplids, consisting of two
phases, a quick partitioning phase, and a refinement phase.
The first phase involved defining a fragment compatibility
vector (fc) and introducing the Clustering Rate (CR) as a
new criterion. The proposed approach utilized an iterative
process in which many fragments are clustered using fc in
each iteration, and a partial haplotype was gradually expanded
to maximize CR. During the second phase, reconstructed
haplotypes were refined to obtain the lowest MEC score

possible. The results of this study demonstrate that the
proposed method is capable of reconstructing haplotypes
with a high degree of speed and accuracy, particularly for
high-coverage sequencing data.

References
[1] 	P. Gupta, J. Roy, M. Prasad, Single nucleotide

polymorphisms: a new paradigm for molecular marker
technology and DNA polymorphism detection with
emphasis on their use in plants, Current science, (2001)
524-535.

Table 3. A comparison of execution time based on coverage and error rateTable 3. A comparison of execution time based on coverage and error rate

C e SSK FastHap FCMHap Quickhap

5 0.01 5.702 5.160 6.289 5.101

5 0.05 7.405 5.018 5.960 4.933

5 0.1 9.050 5.215 5.995 5.073

5 0.2 9.534 5.367 6.008 5.207

5 0.3 10.219 5.654 5.983 6.014

5 0.4 10.567 5.819 6.165 6.424

10 0.01 31.495 23.911 24.689 20.232

10 0.05 85.297 25.577 25.273 18.259

10 0.1 39.634 23.891 26.011 17.260

10 0.2 55.638 24.321 26.150 18.264

10 0.3 81.342 23.950 24.773 21.105

10 0.4 82.946 22.854 24.051 23.769

20 0.01 152.731 115.581 124.170 71.577

20 0.05 195.993 123.382 124.918 66.778

20 0.1 162.282 126.666 127.922 70.840

20 0.2 430.195 126.057 132.084 73.871

20 0.3 303.234 125.017 125.920 87.225

20 0.4 554.48 112.716 116.032 92.974

M. Bagher et al., AUT J. Electr. Eng., 54(2) (2023) 191-206, DOI: 10.22060/eej.2023.22434.5543

204

[2] R.A. Gibbs, J.W. Belmont, P. Hardenbol, T.D. Willis, F.
Yu, H. Yang, L.-Y. Ch’ang, W. Huang, B. Liu, Y. Shen,
The international HapMap project, (2003).

[3] X. Zhu, S. Zhang, D. Kan, R. Cooper, Haplotype block
definition and its application, in: Biocomputing 2004,
World Scientific, 2003, pp. 152-163.

[4] M.-H. Moeinzadeh, J. Yang, E. Muzychenko, G. Gallone,
D. Heller, K. Reinert, S. Haas, M. Vingron, Ranbow:
a fast and accurate method for polyploid haplotype
reconstruction, PLOS Computational Biology, 16(5)
(2020) e1007843.

[5] S. Majidian, M.H. Kahaei, D. De Ridder, Hap10:
Reconstructing accurate and long polyploid haplotypes
using linked reads, BMC bioinformatics, 21(1) (2020)
1-18.

[6] A. Najafi, D. Nashta-ali, S.A. Motahari, M. Khani, B.H.
Khalaj, H.R. Rabiee, Fundamental limits of pooled-DNA
sequencing, arXiv preprint arXiv:1604.04735, (2016).

[7] A. Rhoads, K.F. Au, PacBio sequencing and its
applications, Genomics, proteomics & bioinformatics,
13(5) (2015) 278-289.

[8] R.J. Roberts, M.O. Carneiro, M.C. Schatz, The advantages
of SMRT sequencing, Genome biology, 14(6) (2013) 1-4.

[9] H. Lu, F. Giordano, Z. Ning, Oxford Nanopore MinION
sequencing and genome assembly, Genomics, proteomics
& bioinformatics, 14(5) (2016) 265-279.

[10] M.A. Quail, I. Kozarewa, F. Smith, A. Scally, P.J.
Stephens, R. Durbin, H. Swerdlow, D.J. Turner, A
large genome center’s improvements to the Illumina
sequencing system, Nature methods, 5(12) (2008) 1005-
1010.

[11] G. Lancia, V. Bafna, S. Istrail, R. Lippert, R. Schwartz,
SNPs problems, complexity, and algorithms, in: ESA,
Springer, 2001, pp. 182-193.

[12] R. Lippert, R. Schwartz, G. Lancia, S. Istrail,
Algorithmic strategies for the single nucleotide
polymorphism haplotype assembly problem, Briefings in
bioinformatics, 3(1) (2002) 23-31.

[13] V. Bansal, V. Bafna, HapCUT: an efficient and
accurate algorithm for the haplotype assembly problem,
Bioinformatics, 24(16) (2008) i153-i159.

[14] W. Qian, Y. Yang, N. Yang, C. Li, Particle swarm
optimization for SNP haplotype reconstruction problem,
Applied mathematics and Computation, 196(1) (2008)
266-272.

[15] T.-C. Wang, J. Taheri, A.Y. Zomaya, Using genetic
algorithm in reconstructing single individual haplotype
with minimum error correction, Journal of biomedical
informatics, 45(5) (2012) 922-930.

[16] M.-H. Olyaee, A. Khanteymoori, AROHap: An effective
algorithm for single individual haplotype reconstruction
based on asexual reproduction optimization,

Computational biology and chemistry, 72 (2018) 1-10.
[17] S. Majidian, M.H. Kahaei, NGS based haplotype

assembly using matrix completion, PLoS One, 14(3)
(2019) e0214455.

[18] S. Majidian, M.M. Mohades, M.H. Kahaei, Matrix
completion with weighted constraint for haplotype
estimation, Digital Signal Processing, 108 (2021)
102880.

[19] M.M. Mohades, S. Majidian, M.H. Kahaei, Haplotype
assembly using manifold optimization and error
correction mechanism, IEEE Signal Processing Letters,
26(6) (2019) 868-872.

[20] A. Panconesi, M. Sozio, Fast hare: A fast heuristic
for single individual SNP haplotype reconstruction,
in: Algorithms in Bioinformatics: 4th International
Workshop, WABI 2004, Bergen, Norway, September 17-
21, 2004. Proceedings 4, Springer, 2004, pp. 266-277.

[21] X.-S. Xu, Y.-X. Li, Semi-supervised clustering algorithm
for haplotype assembly problem based on MEC model,
International journal of data mining and bioinformatics,
6(4) (2012) 429-446.

[22] S. Mazrouee, W. Wang, FastHap: fast and accurate
single individual haplotype reconstruction using fuzzy
conflict graphs, Bioinformatics, 30(17) (2014) i371-i378.

[23] M.H. Olyaee, A. Khanteymoori, E. Fazli, A fuzzy
c-means clustering approach for haplotype reconstruction
based on minimum error correction, Informatics in
Medicine Unlocked, 25 (2021) 100646.

[24] F. Zamani, M.H. Olyaee, A. Khanteymoori, NCMHap:
a novel method for haplotype reconstruction based on
Neutrosophic c-means clustering, Bmc Bioinformatics,
21 (2020) 1-15.

[25] Y. Ono, K. Asai, M. Hamada, PBSIM: PacBio
reads simulator—toward accurate genome assembly,
Bioinformatics, 29(1) (2013) 119-121.

[26] Y. Ono, K. Asai, M. Hamada, PBSIM2: a simulator for
long-read sequencers with a novel generative model of
quality scores, Bioinformatics, 37(5) (2021) 589-595.

[27] APP amyloid beta precursor protein [Homo sapiens
(human)] - Gene - NCBI, in, National Center for
Biotechnology Information.

[28] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan,
N. Homer, G. Marth, G. Abecasis, R. Durbin, G.P.D.P.
Subgroup, The sequence alignment/map format and
SAMtools, bioinformatics, 25(16) (2009) 2078-2079.

[29] P. Edge, V. Bafna, V. Bansal, HapCUT2: robust and
accurate haplotype assembly for diverse sequencing
technologies, Genome research, 27(5) (2017) 801-812.

[30] S. Majidian, M.H. Kahaei, D. de Ridder, Minimum error
correction-based haplotype assembly: Considerations for
long read data, Plos one, 15(6) (2020) e0234470.

M. Bagher et al., AUT J. Electr. Eng., 54(2) (2023) 191-206, DOI: 10.22060/eej.2023.22434.5543

205

HOW TO CITE THIS ARTICLE
M. Bagher, R. Karimzadeh, M. Jahed, B. H. Khalaj, A rapid heuristic algorithm to
solve the single individual haplotype assembly problem , AUT J Electr Eng, 55(2)
(2023) 191-206.
DOI: 10.22060/eej.2023.22434.5543

https://dx.doi.org/10.22060/eej.2023.22434.5543

This
 pa

ge
 in

ten
tio

na
lly

 le
ft b

lan
k

	Blank Page - EN.pdf
	_GoBack

