[1] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.
[2] B. Rueckauer, S.C. Liu, Conversion of analog to spiking neural networks using sparse temporal coding, in: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1-5.
[3] N. Rathi, G. Srinivasan, P. Panda, K. Roy, Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation, arXiv preprint arXiv:2005.01807, (2020).
[4] A. Sengupta, Y. Ye, R. Wang, C. Liu, K. Roy, Going Deeper in Spiking Neural Networks: VGG and Residual Architectures, Frontiers in Neuroscience, 13 (2019).
[5] C. Lee, S.S. Sarwar, P. Panda, G. Srinivasan, K. Roy, Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures, Frontiers in Neuroscience, 14 (2020).
[6] S. Deng, S. Gu, Optimal conversion of conventional artificial neural networks to spiking neural networks, arXiv preprint arXiv:2103.00476, (2021).
[7] J. Allred, K. Roy, L4-Norm Weight Adjustments for Converted Spiking Neural Networks, arXiv preprint arXiv:2111.09446, (2021).
[8] J. Wu, Y. Chua, M. Zhang, G. Li, H. Li, K.C. Tan, A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks, IEEE Transactions on Neural Networks and Learning Systems, (2021) 1-15.
[9] J. Wu, C. Xu, X. Han, D. Zhou, M. Zhang, H. Li, K.C. Tan, Progressive Tandem Learning for Pattern Recognition With Deep Spiking Neural Networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11) (2022) 7824-7840.
[10] S.R. Kheradpisheh, M. Mirsadeghi, T. Masquelier, Spiking Neural Networks Trained via Proxy, IEEE Access, 10 (2022) 70769-70778.
[11] M. Zhang, J. Wang, J. Wu, A. Belatreche, B. Amornpaisannon, Z. Zhang, V.P.K. Miriyala, H. Qu, Y. Chua, T.E. Carlson, H. Li, Rectified Linear Postsynaptic Potential Function for Backpropagation in Deep Spiking Neural Networks, IEEE Transactions on Neural Networks and Learning Systems, 33(5) (2022) 1947-1958.
[12] S.R. Kheradpisheh, T. Masquelier, Temporal backpropagation for spiking neural networks with one spike per neuron, International Journal of Neural Systems, 30(06) (2020) 2050027.
[13] M. Mirsadeghi, M. Shalchian, S.R. Kheradpisheh, T. Masquelier, STiDi-BP: Spike time displacement based error backpropagation in multilayer spiking neural networks, Neurocomputing, 427 (2021) 131-140.
[14] M. Mirsadeghi, M. Shalchian, S.R. Kheradpisheh, T. Masquelier, Spike time displacement based error backpropagation in convolutional spiking neural networks, arXiv preprint arXiv:2108.13621, (2021).
[15] S.R. Kheradpisheh, M. Ganjtabesh, S.J. Thorpe, T. Masquelier, STDP-based spiking deep convolutional neural networks for object recognition, Neural Networks, 99 (2018) 56-67.
[16] M. Mozafari, S.R. Kheradpisheh, T. Masquelier, A. Nowzari-Dalini, M. Ganjtabesh, First-Spike-Based Visual Categorization Using Reward-Modulated STDP, IEEE Transactions on Neural Networks and Learning Systems, 29(12) (2018) 6178-6190.
[17] T. Masquelier, S.J. Thorpe, Unsupervised Learning of Visual Features through Spike Timing Dependent Plasticity, PLOS Computational Biology, 3(2) (2007) e31.
[18] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, S.J. Thorpe, T. Masquelier, Bio-inspired digit recognition using reward-modulated spike-timing-dependent plasticity in deep convolutional networks, Pattern Recognition, 94 (2019) 87-95.
[19] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, T. Masquelier, SpykeTorch: Efficient Simulation of Convolutional Spiking Neural Networks With at Most One Spike per Neuron, Frontiers in Neuroscience, 13 (2019).
[20] S.R. Kheradpisheh, M. Ganjtabesh, T. Masquelier, Bio-inspired unsupervised learning of visual features leads to robust invariant object recognition, Neurocomputing, 205 (2016) 382-392.
[21] J. Göltz, L. Kriener, A. Baumbach, S. Billaudelle, O. Breitwieser, B. Cramer, D. Dold, A.F. Kungl, W. Senn, J. Schemmel, Fast and energy-efficient neuromorphic deep learning with first-spike times, Nature machine intelligence, 3(9) (2021) 823-835.
[22] R. Vaila, J. Chiasson, V. Saxena, Feature extraction using spiking convolutional neural networks, in: Proceedings of the International Conference on Neuromorphic Systems, 2019, pp. 1-8.
[23] S.M. Bohte, J.N. Kok, H. La Poutré, Error-backpropagation in temporally encoded networks of spiking neurons, Neurocomputing, 48(1) (2002) 17-37.
[24] H. Mostafa, Supervised Learning Based on Temporal Coding in Spiking Neural Networks, IEEE Transactions on Neural Networks and Learning Systems, 29(7) (2018) 3227-3235.
[25] I.M. Comsa, K. Potempa, L. Versari, T. Fischbacher, A. Gesmundo, J. Alakuijala, Temporal Coding in Spiking Neural Networks with Alpha Synaptic Function, in: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 8529-8533.
[26] S.B.a.O. Shrestha, Garrick, SLAYER: Spike Layer Error Reassignment in Time, in: Advances in Neural Information Processing Systems, Curran Associates, Inc., 2018.
[27] Y. Wu, L. Deng, G. Li, J. Zhu, L. Shi, Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks, Frontiers in Neuroscience, 12 (2018).
[28] D.a.S. Huh, Terrence J, Gradient Descent for Spiking Neural Networks, in: Garnett (Ed.) Advances in Neural Information Processing Systems, Curran Associates, Inc., 2018.
[29] L. Zuo, F. Xu, C. Zhang, T. Xiahou, Y. Liu, A multi-layer spiking neural network-based approach to bearing fault diagnosis, Reliability Engineering & System Safety, 225 (2022) 108561.
[30] Q. Meng, M. Xiao, S. Yan, Y. Wang, Z. Lin, Z.-Q. Luo, Training High-Performance Low-Latency Spiking Neural Networks by Differentiation on Spike Representation, in, 2022, pp. arXiv:2205.00459.
[31] B. Gardner, A. Grüning, Supervised Learning With First-to-Spike Decoding in Multilayer Spiking Neural Networks, Frontiers in Computational Neuroscience, 15 (2021).
[32] D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in, 2014, pp. arXiv:1412.6980.
[33] E.O. Neftci, H. Mostafa, F. Zenke, Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-Based Optimization to Spiking Neural Networks, IEEE Signal Processing Magazine, 36(6) (2019) 51-63.
[34] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, W. Maass, Long short-term memory and learning-to-learn in networks of spiking neurons, Advances in neural information processing systems, 31 (2018).
[35] F. Zenke, S. Ganguli, SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks, Neural Computation, 30(6) (2018) 1514-1541.
[36] J. Brownlee, A gentle introduction to object recognition with deep learning, Machine Learning Mastery, 5 (2019).
[37] H. Xiao, K. Rasul, R. Vollgraf, Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms, in, 2017, pp. arXiv:1708.07747.
[38] S.R. Kheradpisheh, M. Mirsadeghi, T. Masquelier, BS4NN: Binarized Spiking Neural Networks with Temporal Coding and Learning, Neural Processing Letters, 54(2) (2022) 1255-1273.