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 DS4NN: Direct training of deep spiking neural networks with single spike-based 
temporal coding
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ABSTRACT: Backpropagation is the foremost prevalent and common algorithm for training conventional 
neural networks with deep construction. Here we propose DS4NN, temporal backpropagation for deep 
spiking neural networks with one spike per neuron. We consider a convolutional spiking neural network 
consisting of simple non-leaky integrate-and-fire (IF) neurons, and a form of coding named time-to-
first-spike temporal coding in which, neurons are allowed to fire at most once in a specific time interval, 
which corresponds to simulation duration here. These features together improve the cost and the speed 
of network computation. We use a surrogate gradient at firing times to solve the non-differentiability 
of spike times concerning the membrane potential of spiking neurons, and to prevent the emergence of 
dead neurons in deep layers, we propose a relative encoding scheme for determining desired firing times. 
Evaluations on two classification tasks of MNIST and Fashion-MNIST datasets confirm the capability 
of DS4NN on the deep structure of SNNs. It achieves the accuracy of 99.3% (99.8%) and 91.6% (95.3%) 
on testing samples (training samples) of respectively MNIST and Fashion-MNIST datasets with the 
mean required number of 1126 and 1863 spikes in the whole network. This shows that the proposed 
approach can make fast decisions with low-cost computation and high accuracy.
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1- Introduction
Spiking neural networks (SNNs) have received much 

attention as the third generation of artificial neural networks 
(ANN) in scientific circles. They have a temporal and event-
driven processing nature which makes them more efficient 
and powerful than the traditional ANNs. However, their 
computational power cannot be fully used due to the limited 
number of supervised learning methods. The most prominent 
supervised learning method for artificial neural networks is 
the backpropagation algorithm (BP) which is based on the 
gradient descent method to minimize the output error [1]. Due 
to the temporal nature of SNNs and, the use of dynamic units 
and discrete activation functions, the backward flow of the 
error in the BP algorithm cannot be directly applied to spiking 
neural networks. Therefore, supervised training of SNNs has 
remained an unsolved problem so far. Numerous solutions 
and methods have been proposed for training SNNs by using 
BP, which can be divided into four categories: 1- Conversion 
approach, 2- tandem learning, 3- proxy learning, and 4- direct 
training methods and, we focus on the last category.

In the conversion methods, firstly, backpropagation (BP) 
is employed to train ANN and then convert it to an equivalent 
SNN with the same structure [2-7]. In tandem learning, SNN 
and ANN are coupled layer by layer with shared weights. In 
the forward path, the output of each SNN layer converts to 

spike counts which is fed to the ANN layer as input. In the 
backward pass, each ANN layer receives the spike counts 
and updates the shared weights [8, 9]. In proxy learning, 
an SNN is trained via a proxy ANN [10]. Two networks are 
independent in the forward path. After computing the final 
output of SNN, the SNN error is calculated and replaced in 
the equivalent ANN to update the shared weights.

Although the approaches mentioned above could be 
applied to the deep structure of SNNs with state-of-the-art 
accuracies, they are based on rate-coding or multi-spike 
schemes and they do not consider temporal coding in which 
each neuron emits at most one spike during a specific time 
interval. In temporal coding schemes based on a single 
spike [11-22], information is encoded in the spike times 
where neurons are allowed to spike once. such coding can 
significantly reduce the computational cost and energy 
demand of SNNs compared to rate-based coding paradigms.

In direct training methods, the aim is to directly apply 
backpropagation to SNNs with temporal [11-14, 23-25] or 
rate coding [26-30].  Here, we focus on single-spike temporal 
coding. Bohte, et al.  [23] introduced Spikeprop, which 
directly trains a single-spike-coded multilayer SNN using 
a temporal version of BP. They used an exponential spike-
response model (SRM) for neurons and updated the synaptic 
weights to minimize the temporal error of the network. 
Mostafa [24] defined the neuron firing time as a differentiable 
function of the firing times of its afferents and employed 
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gradient descent to minimize the temporal error. He used 
integrate-and-fire neuron models with exponential decaying 
functions and reached the state-of-the-art performance for 
a multi-layer single-spike-based SNN. Comsa et al. [25] 
used the same method and employed neuron models with 
alpha synaptic function which is computationally expensive. 
In [11], Zhang et al. proposed to use of Rectified Linear 
Postsynaptic Potential function (ReL-PSP) for spiking 
neurons to overcome the discontinuity of the spike function 
and employed temporal BP to train a multi-layer SNN 
with time-to-first-spike coding. Gardner et al. [31] applied 
the BP learning algorithm to a network with first-to-spike 
decoding. They defined the cost function of the network 
over the first spike arrival times in the output layer, while 
other neurons in the hidden layer are based on rate-coding 
schemes. Kherapisheh et al. in [12] proposed S4NN which 
applies the temporal version of traditional BP to multilayer 
SNNs with one spike per neuron. To do so, the temporal error 
is calculated as the difference between the target and actual 
firing times of output neurons, and the gradient descent is 
applied to minimize the error. They employed simple non-
leaky IF neurons with time-to-first-spike temporal coding 
to reduce the computational cost. Mirsadeghi et al. [13] 
introduced the STiDi-BP learning algorithm in which, the 
backward recursive gradient computation is eliminated. They 
employed a linear SRM spiking neuron model with one spike 
per neuron, and in each layer, local Gradient descent (GD) is 
applied to minimize the local temporal error.

However, there are several challenges to directly applying 
BP on deep SNNs with temporal coding (one spike per neuron) 
including the emergence of dead neurons in the middle layers 
and the gradient explosion that unstabilized learning in the in-
entry layers. There are few works that succeeded to overcome 
these challenges. Zhang et al. in [11], used their proposed 
learning algorithm in a deep convolutional spiking neural 
network consisting of two convolutional and two hidden 
layers and achieved good results. In [14], the authors extended 
STiDi-BP for training deep structures of SNNs and reached 
the plausible performance in a deep convolutional spiking 
neural network (CSNN) on the fashion product images.

In this paper, we extend the S4NN learning algorithm [12] 
to overcome the aforementioned challenges and apply them to 
deep convolutional SNNs. We use a dynamic encoding scheme 
to define target firing times and use a surrogate gradient to 
calculate the derivative of the firing times with regard to 
membrane voltage and solve the non-differentiability of the 
spiking function. Using IF neurons as the simplest model of 
a spiking neuron, a sparse temporal coding in which each 
neuron fires at most once, and, a temporal version of BP to 
directly train the network make it to decide as accurately and 
fast as possible. 

The simulation results for the categorization task on two 
datasets of MNIST and Fashion-MNIST, as two popular 
benchmarks, confirm the feasibility of the proposed algorithm 
on deep CSNNs.

2- DS4NN Learning Approach
Here we propose a novel supervised learning algorithm, 

DS4NN, which is the modified version of the S4NN learning 
approach [12] to make it applicable in deep convolutional 
spiking neural networks. DS4NN employs temporal 
backpropagation for the deep single spike-based temporal 
SNNs in which all neurons fire only once per stimulus and 
their exact firing times carry information.

2- 1- Forward path
In forward propagation, sparse spikes representing input 

patterns are presented to the network for estimating the 
network outputs. The proposed spiking neural network has 
a convolutional structure that includes an input layer, a set 
of convolutional layers and pooling layers that are used to 
extract features and placed one after the other, and a stack of 
fully connected layers for classification. At the entry layer, 
efficient temporal coding (time-to-first-spike coding) is used 
to convert the pixel values of the input images to individual 
spikes in a sparse manner.  Neurons that correspond to higher-
value pixels emit spikes earlier and each neuron produces 
only one spike per pixel. We consider that the pixel intensity 
values of each image are in the range [0, maxI ]. Therefore, 
the following equation is used to convert a pixel value to a 
single spike time:
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where, maxt  is the maximum simulation time and it  is 

the firing time of thi  the input neuron, which is obtained by 
encoding the value of the thi  pixel ( iI ).

After encoding each input image and injecting it into 
the network, neurons in the subsequent convolutional layers 
integrate the voltage sum of all the presynaptic spikes received 
from their receptive field to update their membrane voltage. 
Each convolutional layer consists of integrate-and-fire (IF) 
neurons organized in several feature maps. Each feature map 
corresponds to a convolutional filter. The parameters of filters 
should be learned. The membrane potential of the thj  neuron 
in the thl  layer at time step t , ( )l

jV t , is calculated as 
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where 1l

iS −  is the input spike from the presynaptic neuron 
i  and l

jiw  is the input synaptic weight between the thi  
presynaptic neuron in the previous layer and the postsynaptic 
neuron j . i  iterates over the presynaptic neurons. Whenever 
the membrane potential of the IF convolutional neuron 
reaches the threshold thv  and the neuron has not fired at any 
previous time step, it emits a spike and remains silent until 
the end of the simulation. This feature is described by:
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The spike time of each convolutional neuron determines 

the saliency of the extracted feature. Weight sharing happens 
across the receptive field of the neurons (filters) in a particular 
layer. It means that there are fixed weights for each filter 
across the entire input and neurons in a specific map detect 
the same feature at different locations.

After one or more convolutional layers, a pooling 
layer is incorporated. The pooling layers are implemented 
by IF neurons with the input synaptic weights and the 
threshold of one. Therefore, the first input spike from 
the neighboring afferent neurons activate the pooling neuron 
and make it to fire a spike immediately. Note that the learning 
process is not performed for the pooling neurons. Each 
pooling neuron fires only once and emits the earliest input 
spike time as the output, therefore, according to the time-to-
first-spike coding, it does a nonlinear max pooling operation 
on a set of neighboring neurons. This reduces the size of 
feature maps and the number of parameters and computations 
by down-sampling the representation.

The output of the last convolutional or spike-pooling 
layer is converted to a one-dimensional vector (it is no longer 
represented by a matrix but by a vector) and, fed to the 
classification layer. It includes one or more fully-connected 
hidden layers and one output layer. The extracted features are 
processed in the hidden layers where each IF neuron updates 
its membrane voltage according to Eq. (2) and fires a spike 
once its membrane voltage crosses the threshold. The same 
process has been performed in the following fully-connected 
layers. In the output layer, the number of neurons and classes 
are equal. Each output neuron represents a class. The output 
neuron with the smallest firing time is the winner neuron and 
specifies the input image category. 

2- 2-  Backward path
Following forward propagation of the input image, each 

output neuron fires once at a specific time step. The index 
of the output neuron with the earliest firing time defines 
the category of the input image. Here, the modified S4NN 
learning rule [12] is applied to perform categorization tasks in 
the deep convolutional SNNs. First, we compute the temporal 
error by calculating the difference between the actual firing 
times of the output neurons and the target firing times. Target 
firing time determines the class the input belongs. Then, we 
use the Adam optimizer and backpropagation algorithm, to 
update the network parameters and minimize the output error.

In the following, we show how to compute the target spike 
firing times and, express the details of the proposed learning 
algorithm. 

2- 2- 1- Encoding target firing times
The appropriate definition of desired firing times has a 

great effect on preventing the occurrence of dead neurons, 

which is a big challenge in deep SNNs. Here we use a 
relative encoding scheme [13] in which, the target firing 
times of output neurons for each input image are determined 
dynamically concerning the output actual firing times. We 
assume a classification task with C classes, and the input 
image belongs to the thj  category, minτ  and maxτ  are the 
minimum and maximum firing times in the output layer. The 
target firing time of output neuron i is calculated as 
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where, λ  is a consistent parameter used to separate the 

correct neuron and help it to fire earlier. Here, the upper 
and lower limits are equal to 0  and maxT   (the maximum 
simulation time). We consider l

iT  equal to maxT , when, 
maxτ λ+  becomes larger than maxT  and, equal to 0 , when, 
minτ λ−  becomes smaller than 0. With this encoding, the 

output neuron corresponding to the category of the input 
image is forced to fire earlier and others are forced to fire at 
later times.

2- 2- 2- Temporal backpropagation learning rule
In the training phase, the network parameters should be 

adjusted so that the output neuron corresponding to the input 
category emits a spike at earlier times. To do so, first, we 
calculate the output temporal error and then, the gradient 
descent method is applied to update the weights. Here we 
use the Adam optimizer [32] to adjust the parameters and the 
learning rate.

For each output neuron k , the temporal error is measured 
as a difference between its target firing time out

kT  and its 
actual firing time out

kt  predicted by the network, and the cost 
function is the least mean squares of these temporal errors (as 
expressed in Eq. (6))
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Then, the gradient of the cost function lδ  is estimated at 

the output layer, and it is backward propagated to the hidden 
layers using the chain rule to update the parameters and 
reduce the output error, as shown in Eq. (8):
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The first term of Eq. (8) (the gradient to the error function) 

for the output neuron k is expressed as follows
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and to propagate the error to the deeper layers (middle 

layers l ), l
jδ  is computed based on the following equation:
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here, i  iterates on the postsynaptic neurons in layer 1l +

, l
jt  is the firing time of presynaptic neuron j  in layer l, and 
1l

it
+  is the spike latency of postsynaptic neuron i  in layer 

1l + . If the presynaptic neuron j  fires after the postsynaptic 
neuron i , it has no contribution to the above computation.

At each layer l , the backpropagated gradients lδ  should 
be normalized before updating the synaptic weights to avoid 
exploding gradients.
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The second term of (8), the derivative of the postsynaptic 
firing time concerning its membrane voltage, is a challenging 
term due to the temporal and discrete nature of SNNs. 
Here we employ a surrogate gradient to approximate this 
derivative [12, 33-35]. As a prior knowledge, there is a linear 
relationship between the input and output of the artificial 
neuron with Rectified Linear Units (ReLU) [36] activation 
function so that a larger net input causes a greater output 
value. On the other hand, according to the time-to-first-spike 

temporal coding in SNNs, larger values correspond to earlier 
spikes. If an IF neuron receives these early spikes through 
strong synaptic weights, it will also fire earlier. Hence, an IF 
neuron can approximate the functionality of a ReLU neuron. 
It remains silent if the output of ReLU is zero, and it will fire 
at earlier times for larger values of ReLU outputs. Therefore, 
we can surrogate the second term of Eq. (8) with the negative 
of the output derivative of the ReLU neuron with respect to 
its input ( 1

l
i
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t
V
∂
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∂

).
Finally, the third term of (8) can be calculated using Eq. 

(2):
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Where, 1( )l

jS t−  is 1 if the presynaptic neuron j  emits a 
spike at time t , else, it has the value of zero. It confirms that 
the backward computation is valid only at the firing times, 
not all the time steps which are due to the use of first-time-to-
spike-based temporal coding.

3-  Experiment results
3- 1-  MNIST dataset

In this section, we evaluate the DS4NN algorithm on the 
MNIST dataset of handwritten digits which contains 60000
(10000 ) 28 28× training (testing) images. Although this 
problem is largely solved using traditional deep convolutional 
neural networks, MNIST still poses a challenge for the 
solutions based on single-spike temporal SNNs. Our proposed 
CSNN consists of two convolutional layers, both are followed 
by pooling layers. The first and second convolutional layers 
consist of 64  and 128  neuronal maps with conv-window 
sizes of 3 3×  and 3 3 64× ×  respectively and the threshold 
voltage for firing of neurons is 100 mV. In each pooling layer, 
there is a pooling window of size 2 2×  and the stride value 
is 2 . The output layer has 10  IF neurons. The maximum 
simulation is 100  ( max 100T = ) and other parameters are 
given in Table 1.

In Table 2, we present the classification accuracy of the 
proposed DS4NN along with some recent works which are 
based on direct training of single spike-based temporal SNNs. 
Most of the works [24,25,12,13] are based on fully-connected 
implementation with shallow structure. For example, S4NN 

Table 1. Model parameters for the MNIST datasetTable 1. Model parameters for the MNIST dataset 

layer      initial 
weights 

1st   0.1 10 [0, 80] 
2nd  0.1 10 [0, 50] 
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algorithm [12] is only applied to a shallow fully-connected 
SNN with one hidden layer and 400  neurons and achieves 
the accuracy of 97.4% . There are limited works on deep 
SNNs due to some challenges. One important challenge is the 
non-propagation of errors to the deeper layers caused by the 
dead neurons in the middle layers. Zhang et al. in [11] applied 
temporal BP to a CSNN consisting of two convolutional 
layers with 16 and 32 neural maps and two hidden layers with 
800 and 128 neurons (16C5-P2-32C5-P2-800-128-2). They 
used a simple spiking neuron model with rectified linear 
Post-Synaptic-Potential and reached the accuracy of 99.4%.

In [14], Mirsadeghi et al. modified the STiDi-BP 
algorithm to make it practical for deep SNN and achieved a 
performance of 99.2% for the MNIST dataset classification. 

Here we introduce DS4NN, as the modified version of S4NN. 
We reach the state-of-the-art accuracy of 99.3%  on the 
testing samples for a deep SNN with two convolutional layers 
(64C3-P2-128C3-P2-10) and the accuracy of 99.8% has been 
reached on the training set. 

Low cost and rapid computation are the most important 
advantages of single spike-based SNNs over rate-based 
SNNs and traditional ANNs. This fact is illustrated in 
Fig.1 and Fig.2. In Fig.1, the mean number of spikes that 
are emitted in all layers is depicted. Each input image is 
recognized by firing a limited number of neurons and by 
producing a limited number of spikes in the whole network. 
For each output neuron, the average firing time over the input 
images of all classes is shown in Fig.2. The correct output 

Table 2. Comparison of the classification accuracies between some recent works that employed supervised 
algorithms to directly train temporal SNNs on the MNIST dataset. We represent the convolution and pooling 

layers by C and P, respectively, and separate layers by -

Table 2. Comparison of the classification accuracies between some recent works that employed supervised 
algorithms to directly train temporal SNNs on the MNIST dataset. We represent the convolution and pooling layers 

by C and P, respectively, and separate layers by - 

Model  Structure Accuracy(%) 

Mostafa [24] 784-800-10 97.2 

Comsa et al. [25] 784-340-10 97.9 

Kheradpisheh et al. [12] 784-400-10 97.4 

Mirsadeghi et al. [13] 784-350-10 97.4 

Zhang et al. [11] 784-800-10 98.5 

Mirsadeghi et al. [14] 40C5-P2-1000-10 99.2 

Zhang et al. [11] 16C5-P2-32C5-P2-800-128-10 99.4 

DS4NN (This work) 64C3-P2-128C3-P2-10 99.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The mean required number of spikes in each layer of the proposed CSNN for MNIST dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The mean required number of spikes in each layer of the proposed CSNN for 
MNIST dataset
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neuron corresponds to the category of the input image that 
fires earliest. This result confirms that the network can make 
decisions rapidly by firing a restricted number of neurons at 
each layer. Fig.3 shows that it is not required to emit all spikes 
presented in the input image to complete the classification 
task. According to Fig.3, the membrane potential of the 
correct output neuron ( 5th  output neuron corresponds to ‘5’ 
pattern in test image) crosses the threshold at time step 63. 
Therefore, the propagation of a few spikes up to the time step 

63 is enough for the network to complete the classification 
task.

The confusion matrix of the proposed learning algorithm 
is presented in Fig.4 showing that the images related to 
different classes are greatly contrasted with each other and 
this causes the network to categorize the images with high 
accuracy.

On average, the proposed learning algorithm makes 
decisions with an accuracy of 99.3% in 15.6 time-step by 

 

 

Fig. 2. The average firing time of each output neuron over the images of different digit categories of the MNIST dataset in the 

proposed CSNN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The average firing time of each output neuron over the images of different digit 
categories of the MNIST dataset in the proposed CSNN

 

Fig. 3. The membrane potential of all output neurons for ‘5’ pattern in the test image. The network can determine the class of 

input image by emitting only input spikes up to the time step 63 and other spikes are ignored 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The membrane potential of all output neurons for ‘5’ pattern in the test image. The network can determine 
the class of input image by emitting only input spikes up to the time step 63 and other spikes are ignored
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producing only 1126 spikes in the whole network. It confirms 
that the proposed network operates in a sparsely manner 
with fast and accurate computation. Also, it overcomes the 
occurrence of dead neurons that occur in S4NN due to the use 
of a proper method for determining the target firing time of 
output neurons, which is shown in Table 3. 

Table 3 compares the number of dead neurons in the 
proposed method with the number of dead neurons reported 
in [12, 24, 25]. In the proposed network, 61% of the neurons 
in the whole network do not emit any spikes, which are 
called dead neurons. While, if we employ the method of [12] 
to determine the target firing times, 95% of neurons in the 
whole network become dead neurons and, the method used 
in [24] and [25] causes the death of 95.4% of neurons. This 
causes a sharp drop in network performance.

3- 2- Fashion-MNIST dataset
Here we employ Fashion-MNIST [37], a more challenging 

dataset than MNIST, to better evaluate the proposed learning 
algorithm. The Fashion-MNIST dataset contains 28 28×  

grey-scale images of clothing items with 10 classes. The 
proposed network has the structure of 128C3-P2-128C3-
P2-128C3-10 that consists of three convolutional layers 
with 128 neuronal maps and conv-window sizes of 3 3×
, 3 3 128× ×  and 3 3 128× ×  respectively. Each layer has a 
voltage threshold of 100. First, the learning rate is set to 110−  
and decays through the learning epochs by an exponential 
function. The initial value of synaptic weights for each 
convolutional layer are respectively in ranges [0, 80], [0, 60], 
[0, 50], and the value of λ  is 0.1. The pooling layers have a 
pooling window size of 2 2×  with a stride of 2.

In Table 4 we compare the classification accuracy and the 
structure of different temporal coding-based SNN methods 
on the Fashion-MNIST dataset. [38], [12] and [11] reached 
an accuracy of 87.3%, 88.0%, and 88.1% when they only 
used a fully-connected SNN with one hidden layer consisting 
of 1000 hidden neurons. Up to now, [11] and [14] and this 
work are the only implementations of deep single spike-based 
SNNs. The proposed DS4NN reaches an accuracy of 95.3% 
on the training set and the state-of-the-art accuracy of 91.6% 

 

Fig. 4. The confusion matrix of the proposed CSNN on MNIST dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The confusion matrix of the proposed CSNN on MNIST dataset

Table 3. Comparing the number of dead neurons presented in different methods of deter-
mining target firing timeTable 3. Comparing the number of dead neurons presented in different methods of determining target firing time 

Method Num. of dead neurons 
Proposed method  61% 

Kheradpisheh et al [12] 95% 
Mostafa [24] 95.4% 

Comsa et al. [25] 95.4% 
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on the testing samples.
The average spike time that output neurons fire and the 

mean number of spikes produced in the whole network are 
listed in Table 5. Similar to the result obtained for MNIST, 
to recognize the image class, it is not required to transmit 
all spikes of the input image, and, the classification task is 
accomplished by sending just a few spikes of the encoded 
input image to the network.

In Fig.5, we illustrate the average spike times that output 
neurons fire for the Fashion-MNIST dataset. For a few image 
categories including “Sandal” against “Sneaker” and “ankle 
boot”, the output neuron corresponding to the input image, 
does not fire much earlier than other output neurons due to 
the resemblance of those classes. This limits the accuracy of 
the D4SNN algorithm and is depicted in the confusion matrix 
of Fig.6.

Table 4. Comparison of the classification accuracy and network structure reported by several recent works 
that employed a supervised algorithm to directly train temporal SNNs on the Fashion-MNIST dataset. We 

represent the convolution and pooling layers by C and P, respectively, and separate layers by -

Table 4. Comparison of the classification accuracy and network structure reported by several recent works that 
employed a supervised algorithm to directly train temporal SNNs on the Fashion-MNIST dataset. We represent the 

convolution and pooling layers by C and P, respectively, and separate layers by - 

Model  Structure Accuracy(%) 
Kheradpisheh et al. [38] 784-1000-10 87.3 
Kheradpisheh et al. [12] 784-1000-10 88.0 

Zhang et al. [11] 784-1000-10 88.1 
Zhang et al. [11] 16C5-P2-32C5-P2-800-128-10 90.1 

Mirsadeghi et al. [14] 20C5-P2-40C5-P2-1000-10 92.8 
DS4NN (This work) 128C3-P2-128C3-P2-128C3-10 91.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. The average firing time (AFT) of the correct output neuron and the mean required number (MRN) 
of spikes emitted in all layers of the network over each class of Fashion-MNIST

Table 5. The average firing time (AFT) of the correct output neuron and the mean required number (MRN) of spikes 
emitted in all layers of the network over each class of Fashion-MNIST 

Category T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot 

AFT 37 22 40 30 32 31 45 20 21 17 

MRN 2709 1925 2663 1251 1885 1312 2596 1038 3439 1695 

 

 

 

 

 

Fig. 5. The average firing times of the output neurons in the Fashion-MNIST classes in the proposed CSNN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The average firing times of the output neurons in the Fashion-MNIST classes in the proposed CSNN
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According to Fig.6, the network confuses ankle boots, 
sandals, and sneakers. The same goes for T-shirts, shirts, 
dresses, coats, and pullovers, where, the output neurons 
corresponding to these categories have similar average firing 
times.

4- Discussion
In this paper, we proposed a temporal version of 

backpropagation, DS4NN, for training deep single spike-based 
SNNs, directly. To this end, we extended S4NN introduced 
in [12] and employed it in an SNN with convolutional 
architecture (CSNN).  In the forward path, the input image is 
encoded into a spike train using time-to-first-spike coding and 
fed into the network. Then, the convolutional and the max. 
pooling operations are applied to the input spike train and 
the extracted features are given to the subsequent hidden and 
output neurons in the classification layer. Finally, the network 
makes decisions by the first spike in the output layer. Here 
we used instantaneous synapses and non-leaky IF neurons 
as the simplest model of spiking neurons, which reduces 
the computational cost of the proposed CSNN. As soon as 
the neuron fires, it resets and forgets its state. Therefore, 
the corresponding memory can be used by other neurons, 
which makes the proposed method memory efficient.  In 
the backward path, we applied the temporal version of the 
backpropagation algorithm. We calculate the temporal 
error by subtracting the actual and target firing times, and, 

the calculated gradients are backpropagated through the 
network to update the synaptic weights by using the Adam 
optimizer. To prevent exploding and vanishing gradients, 
we normalized the backpropagated gradients at each layer, 
and then, we updated the weights. Here we used a dynamic 
temporal encoding to define the desired firing times, which 
are dependent on the output spike latencies and the category 
label of the input image. The output neuron corresponding to 
the class label should be forced to fire earlier and the other 
output neurons are forced to fire later. Determining the proper 
target firing time for each input image has a great impact 
on reducing the number of dead neurons and increasing 
the classification accuracy of the network. Here to prevent 
extreme changes in the weights, the learning rate parameter η 
discounts by 10% every 5 epochs.

Spiking neural networks are more suitable for parallel 
processing compared to traditional neural networks, due to 
the fact that they are asynchronous. However, the temporal 
and discrete nature of spiking neurons makes the training of 
SNNs difficult. There are some approaches for supervised 
learning of temporal SNNs with at most one spike per neuron 
[23-25, 11-14]. 

In single spike-based temporal SNNs [23-25, 11-14], 
neurons transmit information by the timing of individual 
spikes rather than multi spikes, which makes the network 
decide before most neurons have fired. Also, gradients are 
backpropagated through the network only at the actual firing 

 

 

Fig. 6. The confusion matrix of the proposed CSNN on Fashion-MNIST 

 

Fig. 6. The confusion matrix of the proposed CSNN on Fashion-MNIST
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times, which causes the space complexity of each layer to 
become O(N), while, in rate-based coding schemes, due to 
the backward computation in all steps of the simulation time 
the space complexity is O(NT). 

Here, we employ the IF neuron model in all layers which 
has made the proposed algorithm more computationally 
efficient. While, other approaches [11, 13, 24, 25] have 
complex neural processing due to the use of complicated 
neuron models. In [24], a non-leaky integrate and fire neurons 
with an exponentially decaying function was used. [25] 
employed spike response neuron model (SRM) with alpha 
synaptic function, Zhang et. al in [11] introduced rectified 
linear PSP based spiking neurons, and Mirsadeghi et. al [14] 
employed piecewise linear neuron models in all layers.

Training of single spike-based SNNs, especially their deep 
structure, is a great challenge due to the occurrence of dead 
neurons in the middle layers that prevent the backpropagation 
of errors [23-25, 12, 13]. There are few works in this area 
that try to train deep temporal SNNs with single spike-based 
coding [11, 14]. Here we focus on this topic. We improved 
the target firing time determination method in S4NN to avoid 
the occurrence of dead neurons and reduced the learning rate 
by 10% every 5 epochs to avoid large changes in weights 
and network divergence. Also, we replaced Adam’s optimizer 
with stochastic gradient descent (SGD). Therefore, we 
modified the S4NN algorithm for training deep SNNs.

Simulation results on two benchmark datasets of MNIST 
and Fashion-MNIST confirm that the proposed DS4NN 
algorithm is applicable in deep architectures of SNNs and 
it can make quick decisions with high accuracy and by 
producing only a few spikes. DS4NN outperforms [11] and 
[14] and achieves an accuracy of 99.3% on the MNIST dataset 
and an accuracy of 91.6% on the Fashion-MNIST dataset. 

5- Conclusion
In this work, we introduced DS4NN for direct training 

of deep spiking neural networks. This method is faster, 
more energy efficient, and computationally cheaper than 
rate-based SNN and ANN due to the sparseness and use of 
simple IF neuron models. In single-spike-based temporal 
SNNs, each IF neuron is allowed to fire only once, which 
helps the network make fast decisions and perform backward 
computations in a sparse manner. Also, most of the energy 
consumed in neuromorphic hardware is caused by spikes and 
calculations in neurons. Therefore, using a simple neuron 
model and sparsely performing calculations can greatly 
reduce the energy consumption of the hardware.
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