
AUT Journal of Electrical Engineering

AUT J. Electr. Eng., 55(2) (2023) 179-190
DOI: 10.22060/eej.2023.21991.5502

 DS4NN: Direct training of deep spiking neural networks with single spike-based
temporal coding
Maryam Mirsadeghi1, Majid Shalchian1* , Saeed Reza Kheradpisheh3

1 Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
2 Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran

ABSTRACT: Backpropagation is the foremost prevalent and common algorithm for training conventional
neural networks with deep construction. Here we propose DS4NN, temporal backpropagation for deep
spiking neural networks with one spike per neuron. We consider a convolutional spiking neural network
consisting of simple non-leaky integrate-and-fire (IF) neurons, and a form of coding named time-to-
first-spike temporal coding in which, neurons are allowed to fire at most once in a specific time interval,
which corresponds to simulation duration here. These features together improve the cost and the speed
of network computation. We use a surrogate gradient at firing times to solve the non-differentiability
of spike times concerning the membrane potential of spiking neurons, and to prevent the emergence of
dead neurons in deep layers, we propose a relative encoding scheme for determining desired firing times.
Evaluations on two classification tasks of MNIST and Fashion-MNIST datasets confirm the capability
of DS4NN on the deep structure of SNNs. It achieves the accuracy of 99.3% (99.8%) and 91.6% (95.3%)
on testing samples (training samples) of respectively MNIST and Fashion-MNIST datasets with the
mean required number of 1126 and 1863 spikes in the whole network. This shows that the proposed
approach can make fast decisions with low-cost computation and high accuracy.

Review History:

Received: Dec. 13, 2022
Revised: Feb. 05, 2023
Accepted: Feb. 27, 2023
Available Online: Oct. 10, 2023

Keywords:

Deep spiking neural network

Temporal backpropagation

Single spike-based coding

Supervised learning

Integrate-and-fire neuron model

179

1- Introduction
Spiking neural networks (SNNs) have received much

attention as the third generation of artificial neural networks
(ANN) in scientific circles. They have a temporal and event-
driven processing nature which makes them more efficient
and powerful than the traditional ANNs. However, their
computational power cannot be fully used due to the limited
number of supervised learning methods. The most prominent
supervised learning method for artificial neural networks is
the backpropagation algorithm (BP) which is based on the
gradient descent method to minimize the output error [1]. Due
to the temporal nature of SNNs and, the use of dynamic units
and discrete activation functions, the backward flow of the
error in the BP algorithm cannot be directly applied to spiking
neural networks. Therefore, supervised training of SNNs has
remained an unsolved problem so far. Numerous solutions
and methods have been proposed for training SNNs by using
BP, which can be divided into four categories: 1- Conversion
approach, 2- tandem learning, 3- proxy learning, and 4- direct
training methods and, we focus on the last category.

In the conversion methods, firstly, backpropagation (BP)
is employed to train ANN and then convert it to an equivalent
SNN with the same structure [2-7]. In tandem learning, SNN
and ANN are coupled layer by layer with shared weights. In
the forward path, the output of each SNN layer converts to

spike counts which is fed to the ANN layer as input. In the
backward pass, each ANN layer receives the spike counts
and updates the shared weights [8, 9]. In proxy learning,
an SNN is trained via a proxy ANN [10]. Two networks are
independent in the forward path. After computing the final
output of SNN, the SNN error is calculated and replaced in
the equivalent ANN to update the shared weights.

Although the approaches mentioned above could be
applied to the deep structure of SNNs with state-of-the-art
accuracies, they are based on rate-coding or multi-spike
schemes and they do not consider temporal coding in which
each neuron emits at most one spike during a specific time
interval. In temporal coding schemes based on a single
spike [11-22], information is encoded in the spike times
where neurons are allowed to spike once. such coding can
significantly reduce the computational cost and energy
demand of SNNs compared to rate-based coding paradigms.

In direct training methods, the aim is to directly apply
backpropagation to SNNs with temporal [11-14, 23-25] or
rate coding [26-30]. Here, we focus on single-spike temporal
coding. Bohte, et al. [23] introduced Spikeprop, which
directly trains a single-spike-coded multilayer SNN using
a temporal version of BP. They used an exponential spike-
response model (SRM) for neurons and updated the synaptic
weights to minimize the temporal error of the network.
Mostafa [24] defined the neuron firing time as a differentiable
function of the firing times of its afferents and employed

*Corresponding author’s email: shalchian@aut.ac.ir

 Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article
 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

https://dx.doi.org/10.22060/eej.2023.21991.5502
https://orcid.org/0000-0001-8629-9506

M. Mirsadeghi et al., AUT J. Elec. Eng., 54(2) (2023) 179-190, DOI: 10.22060/eej.2023.21991.5502

180

gradient descent to minimize the temporal error. He used
integrate-and-fire neuron models with exponential decaying
functions and reached the state-of-the-art performance for
a multi-layer single-spike-based SNN. Comsa et al. [25]
used the same method and employed neuron models with
alpha synaptic function which is computationally expensive.
In [11], Zhang et al. proposed to use of Rectified Linear
Postsynaptic Potential function (ReL-PSP) for spiking
neurons to overcome the discontinuity of the spike function
and employed temporal BP to train a multi-layer SNN
with time-to-first-spike coding. Gardner et al. [31] applied
the BP learning algorithm to a network with first-to-spike
decoding. They defined the cost function of the network
over the first spike arrival times in the output layer, while
other neurons in the hidden layer are based on rate-coding
schemes. Kherapisheh et al. in [12] proposed S4NN which
applies the temporal version of traditional BP to multilayer
SNNs with one spike per neuron. To do so, the temporal error
is calculated as the difference between the target and actual
firing times of output neurons, and the gradient descent is
applied to minimize the error. They employed simple non-
leaky IF neurons with time-to-first-spike temporal coding
to reduce the computational cost. Mirsadeghi et al. [13]
introduced the STiDi-BP learning algorithm in which, the
backward recursive gradient computation is eliminated. They
employed a linear SRM spiking neuron model with one spike
per neuron, and in each layer, local Gradient descent (GD) is
applied to minimize the local temporal error.

However, there are several challenges to directly applying
BP on deep SNNs with temporal coding (one spike per neuron)
including the emergence of dead neurons in the middle layers
and the gradient explosion that unstabilized learning in the in-
entry layers. There are few works that succeeded to overcome
these challenges. Zhang et al. in [11], used their proposed
learning algorithm in a deep convolutional spiking neural
network consisting of two convolutional and two hidden
layers and achieved good results. In [14], the authors extended
STiDi-BP for training deep structures of SNNs and reached
the plausible performance in a deep convolutional spiking
neural network (CSNN) on the fashion product images.

In this paper, we extend the S4NN learning algorithm [12]
to overcome the aforementioned challenges and apply them to
deep convolutional SNNs. We use a dynamic encoding scheme
to define target firing times and use a surrogate gradient to
calculate the derivative of the firing times with regard to
membrane voltage and solve the non-differentiability of the
spiking function. Using IF neurons as the simplest model of
a spiking neuron, a sparse temporal coding in which each
neuron fires at most once, and, a temporal version of BP to
directly train the network make it to decide as accurately and
fast as possible.

The simulation results for the categorization task on two
datasets of MNIST and Fashion-MNIST, as two popular
benchmarks, confirm the feasibility of the proposed algorithm
on deep CSNNs.

2- DS4NN Learning Approach
Here we propose a novel supervised learning algorithm,

DS4NN, which is the modified version of the S4NN learning
approach [12] to make it applicable in deep convolutional
spiking neural networks. DS4NN employs temporal
backpropagation for the deep single spike-based temporal
SNNs in which all neurons fire only once per stimulus and
their exact firing times carry information.

2- 1- Forward path
In forward propagation, sparse spikes representing input

patterns are presented to the network for estimating the
network outputs. The proposed spiking neural network has
a convolutional structure that includes an input layer, a set
of convolutional layers and pooling layers that are used to
extract features and placed one after the other, and a stack of
fully connected layers for classification. At the entry layer,
efficient temporal coding (time-to-first-spike coding) is used
to convert the pixel values of the input images to individual
spikes in a sparse manner. Neurons that correspond to higher-
value pixels emit spikes earlier and each neuron produces
only one spike per pixel. We consider that the pixel intensity
values of each image are in the range [0, maxI]. Therefore,
the following equation is used to convert a pixel value to a
single spike time:

max
max

max

[],i
i

I It t
I

 (1)

1() (1) (),l l l l
j j ji i

i I
V t V t w S t

 (2)

1 & () 1
()

0

l l
l i th i
i

if V v S t
S t

Otherwise

 (3)

min

max ,
l

i

if i j
T

if i j

 (4)

,out out out
k k ke t T (5)

21 () .
2

out out out
k k

k k
E E e (6)

,
out

l
l

E
t

 (7)

.
out out l l

l l l l
E E t V
w t V w

 (8)

,
out

l out
kout

k

E e
t

 (9)

1 1
1 1

1 1 1 [],
l lout out

l l l li i
j i j il l l l

i ii i j i

t VE E w t t
t V t t

 (10)

 (1)

where, maxt is the maximum simulation time and it is

the firing time of thi the input neuron, which is obtained by
encoding the value of the thi pixel (iI).

After encoding each input image and injecting it into
the network, neurons in the subsequent convolutional layers
integrate the voltage sum of all the presynaptic spikes received
from their receptive field to update their membrane voltage.
Each convolutional layer consists of integrate-and-fire (IF)
neurons organized in several feature maps. Each feature map
corresponds to a convolutional filter. The parameters of filters
should be learned. The membrane potential of the thj neuron
in the thl layer at time step t , ()l

jV t , is calculated as

max
max

max

[],i
i

I It t
I

 (1)

1() (1) (),l l l l
j j ji i

i I
V t V t w S t

 (2)

1 & () 1
()

0

l l
l i th i
i

if V v S t
S t

Otherwise

 (3)

min

max ,
l

i

if i j
T

if i j

 (4)

,out out out
k k ke t T (5)

21 () .
2

out out out
k k

k k
E E e (6)

,
out

l
l

E
t

 (7)

.
out out l l

l l l l
E E t V
w t V w

 (8)

,
out

l out
kout

k

E e
t

 (9)

1 1
1 1

1 1 1 [],
l lout out

l l l li i
j i j il l l l

i ii i j i

t VE E w t t
t V t t

 (10)

 (2)

where 1l

iS − is the input spike from the presynaptic neuron
i and l

jiw is the input synaptic weight between the thi
presynaptic neuron in the previous layer and the postsynaptic
neuron j . i iterates over the presynaptic neurons. Whenever
the membrane potential of the IF convolutional neuron
reaches the threshold thv and the neuron has not fired at any
previous time step, it emits a spike and remains silent until
the end of the simulation. This feature is described by:

M. Mirsadeghi et al., AUT J. Elec. Eng., 54(2) (2023) 179-190, DOI: 10.22060/eej.2023.21991.5502

181

max
max

max

[],i
i

I It t
I

 (1)

1() (1) (),l l l l
j j ji i

i I
V t V t w S t

 (2)

1 & () 1
()

0

l l
l i th i
i

if V v S t
S t

Otherwise

 (3)

min

max ,
l

i

if i j
T

if i j

 (4)

,out out out
k k ke t T (5)

21 () .
2

out out out
k k

k k
E E e (6)

,
out

l
l

E
t

 (7)

.
out out l l

l l l l
E E t V
w t V w

 (8)

,
out

l out
kout

k

E e
t

 (9)

1 1
1 1

1 1 1 [],
l lout out

l l l li i
j i j il l l l

i ii i j i

t VE E w t t
t V t t

 (10)

 (3)

The spike time of each convolutional neuron determines

the saliency of the extracted feature. Weight sharing happens
across the receptive field of the neurons (filters) in a particular
layer. It means that there are fixed weights for each filter
across the entire input and neurons in a specific map detect
the same feature at different locations.

After one or more convolutional layers, a pooling
layer is incorporated. The pooling layers are implemented
by IF neurons with the input synaptic weights and the
threshold of one. Therefore, the first input spike from
the neighboring afferent neurons activate the pooling neuron
and make it to fire a spike immediately. Note that the learning
process is not performed for the pooling neurons. Each
pooling neuron fires only once and emits the earliest input
spike time as the output, therefore, according to the time-to-
first-spike coding, it does a nonlinear max pooling operation
on a set of neighboring neurons. This reduces the size of
feature maps and the number of parameters and computations
by down-sampling the representation.

The output of the last convolutional or spike-pooling
layer is converted to a one-dimensional vector (it is no longer
represented by a matrix but by a vector) and, fed to the
classification layer. It includes one or more fully-connected
hidden layers and one output layer. The extracted features are
processed in the hidden layers where each IF neuron updates
its membrane voltage according to Eq. (2) and fires a spike
once its membrane voltage crosses the threshold. The same
process has been performed in the following fully-connected
layers. In the output layer, the number of neurons and classes
are equal. Each output neuron represents a class. The output
neuron with the smallest firing time is the winner neuron and
specifies the input image category.

2- 2- Backward path
Following forward propagation of the input image, each

output neuron fires once at a specific time step. The index
of the output neuron with the earliest firing time defines
the category of the input image. Here, the modified S4NN
learning rule [12] is applied to perform categorization tasks in
the deep convolutional SNNs. First, we compute the temporal
error by calculating the difference between the actual firing
times of the output neurons and the target firing times. Target
firing time determines the class the input belongs. Then, we
use the Adam optimizer and backpropagation algorithm, to
update the network parameters and minimize the output error.

In the following, we show how to compute the target spike
firing times and, express the details of the proposed learning
algorithm.

2- 2- 1- Encoding target firing times
The appropriate definition of desired firing times has a

great effect on preventing the occurrence of dead neurons,

which is a big challenge in deep SNNs. Here we use a
relative encoding scheme [13] in which, the target firing
times of output neurons for each input image are determined
dynamically concerning the output actual firing times. We
assume a classification task with C classes, and the input
image belongs to the thj category, minτ and maxτ are the
minimum and maximum firing times in the output layer. The
target firing time of output neuron i is calculated as

max
max

max

[],i
i

I It t
I

 (1)

1() (1) (),l l l l
j j ji i

i I
V t V t w S t

 (2)

1 & () 1
()

0

l l
l i th i
i

if V v S t
S t

Otherwise

 (3)

min

max ,
l

i

if i j
T

if i j

 (4)

,out out out
k k ke t T (5)

21 () .
2

out out out
k k

k k
E E e (6)

,
out

l
l

E
t

 (7)

.
out out l l

l l l l
E E t V
w t V w

 (8)

,
out

l out
kout

k

E e
t

 (9)

1 1
1 1

1 1 1 [],
l lout out

l l l li i
j i j il l l l

i ii i j i

t VE E w t t
t V t t

 (10)

 (4)

where, λ is a consistent parameter used to separate the

correct neuron and help it to fire earlier. Here, the upper
and lower limits are equal to 0 and maxT (the maximum
simulation time). We consider l

iT equal to maxT , when,
maxτ λ+ becomes larger than maxT and, equal to 0 , when,
minτ λ− becomes smaller than 0. With this encoding, the

output neuron corresponding to the category of the input
image is forced to fire earlier and others are forced to fire at
later times.

2- 2- 2- Temporal backpropagation learning rule
In the training phase, the network parameters should be

adjusted so that the output neuron corresponding to the input
category emits a spike at earlier times. To do so, first, we
calculate the output temporal error and then, the gradient
descent method is applied to update the weights. Here we
use the Adam optimizer [32] to adjust the parameters and the
learning rate.

For each output neuron k , the temporal error is measured
as a difference between its target firing time out

kT and its
actual firing time out

kt predicted by the network, and the cost
function is the least mean squares of these temporal errors (as
expressed in Eq. (6))

max
max

max

[],i
i

I It t
I

 (1)

1() (1) (),l l l l
j j ji i

i I
V t V t w S t

 (2)

1 & () 1
()

0

l l
l i th i
i

if V v S t
S t

Otherwise

 (3)

min

max ,
l

i

if i j
T

if i j

 (4)

,out out out
k k ke t T (5)

21 () .
2

out out out
k k

k k
E E e (6)

,
out

l
l

E
t

 (7)

.
out out l l

l l l l
E E t V
w t V w

 (8)

,
out

l out
kout

k

E e
t

 (9)

1 1
1 1

1 1 1 [],
l lout out

l l l li i
j i j il l l l

i ii i j i

t VE E w t t
t V t t

 (10)

 (5)

max
max

max

[],i
i

I It t
I

 (1)

1() (1) (),l l l l
j j ji i

i I
V t V t w S t

 (2)

1 & () 1
()

0

l l
l i th i
i

if V v S t
S t

Otherwise

 (3)

min

max ,
l

i

if i j
T

if i j

 (4)

,out out out
k k ke t T (5)

21 () .
2

out out out
k k

k k
E E e (6)

,
out

l
l

E
t

 (7)

.
out out l l

l l l l
E E t V
w t V w

 (8)

,
out

l out
kout

k

E e
t

 (9)

1 1
1 1

1 1 1 [],
l lout out

l l l li i
j i j il l l l

i ii i j i

t VE E w t t
t V t t

 (10)

 (6)

Then, the gradient of the cost function lδ is estimated at

the output layer, and it is backward propagated to the hidden
layers using the chain rule to update the parameters and
reduce the output error, as shown in Eq. (8):

max
max

max

[],i
i

I It t
I

 (1)

1() (1) (),l l l l
j j ji i

i I
V t V t w S t

 (2)

1 & () 1
()

0

l l
l i th i
i

if V v S t
S t

Otherwise

 (3)

min

max ,
l

i

if i j
T

if i j

 (4)

,out out out
k k ke t T (5)

21 () .
2

out out out
k k

k k
E E e (6)

,
out

l
l

E
t

 (7)

.
out out l l

l l l l
E E t V
w t V w

 (8)

,
out

l out
kout

k

E e
t

 (9)

1 1
1 1

1 1 1 [],
l lout out

l l l li i
j i j il l l l

i ii i j i

t VE E w t t
t V t t

 (10)

 (7)

M. Mirsadeghi et al., AUT J. Elec. Eng., 54(2) (2023) 179-190, DOI: 10.22060/eej.2023.21991.5502

182

max
max

max

[],i
i

I It t
I

 (1)

1() (1) (),l l l l
j j ji i

i I
V t V t w S t

 (2)

1 & () 1
()

0

l l
l i th i
i

if V v S t
S t

Otherwise

 (3)

min

max ,
l

i

if i j
T

if i j

 (4)

,out out out
k k ke t T (5)

21 () .
2

out out out
k k

k k
E E e (6)

,
out

l
l

E
t

 (7)

.
out out l l

l l l l
E E t V
w t V w

 (8)

,
out

l out
kout

k

E e
t

 (9)

1 1
1 1

1 1 1 [],
l lout out

l l l li i
j i j il l l l

i ii i j i

t VE E w t t
t V t t

 (10)

 (8)

The first term of Eq. (8) (the gradient to the error function)

for the output neuron k is expressed as follows

max
max

max

[],i
i

I It t
I

 (1)

1() (1) (),l l l l
j j ji i

i I
V t V t w S t

 (2)

1 & () 1
()

0

l l
l i th i
i

if V v S t
S t

Otherwise

 (3)

min

max ,
l

i

if i j
T

if i j

 (4)

,out out out
k k ke t T (5)

21 () .
2

out out out
k k

k k
E E e (6)

,
out

l
l

E
t

 (7)

.
out out l l

l l l l
E E t V
w t V w

 (8)

,
out

l out
kout

k

E e
t

 (9)

1 1
1 1

1 1 1 [],
l lout out

l l l li i
j i j il l l l

i ii i j i

t VE E w t t
t V t t

 (10)

 (9)

and to propagate the error to the deeper layers (middle

layers l), l
jδ is computed based on the following equation:

max
max

max

[],i
i

I It t
I

 (1)

1() (1) (),l l l l
j j ji i

i I
V t V t w S t

 (2)

1 & () 1
()

0

l l
l i th i
i

if V v S t
S t

Otherwise

 (3)

min

max ,
l

i

if i j
T

if i j

 (4)

,out out out
k k ke t T (5)

21 () .
2

out out out
k k

k k
E E e (6)

,
out

l
l

E
t

 (7)

.
out out l l

l l l l
E E t V
w t V w

 (8)

,
out

l out
kout

k

E e
t

 (9)

1 1
1 1

1 1 1 [],
l lout out

l l l li i
j i j il l l l

i ii i j i

t VE E w t t
t V t t

 (10) (10)

here, i iterates on the postsynaptic neurons in layer 1l +

, l
jt is the firing time of presynaptic neuron j in layer l, and
1l

it
+ is the spike latency of postsynaptic neuron i in layer

1l + . If the presynaptic neuron j fires after the postsynaptic
neuron i , it has no contribution to the above computation.

At each layer l , the backpropagated gradients lδ should
be normalized before updating the synaptic weights to avoid
exploding gradients.

.
l
jl

j l
i

i

 (11)

1() ().
l

li
j

ji

V t S t
w

 (12)

 (11)

The second term of (8), the derivative of the postsynaptic
firing time concerning its membrane voltage, is a challenging
term due to the temporal and discrete nature of SNNs.
Here we employ a surrogate gradient to approximate this
derivative [12, 33-35]. As a prior knowledge, there is a linear
relationship between the input and output of the artificial
neuron with Rectified Linear Units (ReLU) [36] activation
function so that a larger net input causes a greater output
value. On the other hand, according to the time-to-first-spike

temporal coding in SNNs, larger values correspond to earlier
spikes. If an IF neuron receives these early spikes through
strong synaptic weights, it will also fire earlier. Hence, an IF
neuron can approximate the functionality of a ReLU neuron.
It remains silent if the output of ReLU is zero, and it will fire
at earlier times for larger values of ReLU outputs. Therefore,
we can surrogate the second term of Eq. (8) with the negative
of the output derivative of the ReLU neuron with respect to
its input (1

l
i
l

t
V
∂

→ −
∂

).
Finally, the third term of (8) can be calculated using Eq.

(2):

.
l
jl

j l
i

i

 (11)

1() ().
l

li
j

ji

V t S t
w

 (12)

 (12)

Where, 1()l

jS t− is 1 if the presynaptic neuron j emits a
spike at time t , else, it has the value of zero. It confirms that
the backward computation is valid only at the firing times,
not all the time steps which are due to the use of first-time-to-
spike-based temporal coding.

3- Experiment results
3- 1- MNIST dataset

In this section, we evaluate the DS4NN algorithm on the
MNIST dataset of handwritten digits which contains 60000
(10000) 28 28× training (testing) images. Although this
problem is largely solved using traditional deep convolutional
neural networks, MNIST still poses a challenge for the
solutions based on single-spike temporal SNNs. Our proposed
CSNN consists of two convolutional layers, both are followed
by pooling layers. The first and second convolutional layers
consist of 64 and 128 neuronal maps with conv-window
sizes of 3 3× and 3 3 64× × respectively and the threshold
voltage for firing of neurons is 100 mV. In each pooling layer,
there is a pooling window of size 2 2× and the stride value
is 2 . The output layer has 10 IF neurons. The maximum
simulation is 100 (max 100T =) and other parameters are
given in Table 1.

In Table 2, we present the classification accuracy of the
proposed DS4NN along with some recent works which are
based on direct training of single spike-based temporal SNNs.
Most of the works [24,25,12,13] are based on fully-connected
implementation with shallow structure. For example, S4NN

Table 1. Model parameters for the MNIST datasetTable 1. Model parameters for the MNIST dataset

layer initial
weights

1st 0.1 10 [0, 80]
2nd 0.1 10 [0, 50]

M. Mirsadeghi et al., AUT J. Elec. Eng., 54(2) (2023) 179-190, DOI: 10.22060/eej.2023.21991.5502

183

algorithm [12] is only applied to a shallow fully-connected
SNN with one hidden layer and 400 neurons and achieves
the accuracy of 97.4% . There are limited works on deep
SNNs due to some challenges. One important challenge is the
non-propagation of errors to the deeper layers caused by the
dead neurons in the middle layers. Zhang et al. in [11] applied
temporal BP to a CSNN consisting of two convolutional
layers with 16 and 32 neural maps and two hidden layers with
800 and 128 neurons (16C5-P2-32C5-P2-800-128-2). They
used a simple spiking neuron model with rectified linear
Post-Synaptic-Potential and reached the accuracy of 99.4%.

In [14], Mirsadeghi et al. modified the STiDi-BP
algorithm to make it practical for deep SNN and achieved a
performance of 99.2% for the MNIST dataset classification.

Here we introduce DS4NN, as the modified version of S4NN.
We reach the state-of-the-art accuracy of 99.3% on the
testing samples for a deep SNN with two convolutional layers
(64C3-P2-128C3-P2-10) and the accuracy of 99.8% has been
reached on the training set.

Low cost and rapid computation are the most important
advantages of single spike-based SNNs over rate-based
SNNs and traditional ANNs. This fact is illustrated in
Fig.1 and Fig.2. In Fig.1, the mean number of spikes that
are emitted in all layers is depicted. Each input image is
recognized by firing a limited number of neurons and by
producing a limited number of spikes in the whole network.
For each output neuron, the average firing time over the input
images of all classes is shown in Fig.2. The correct output

Table 2. Comparison of the classification accuracies between some recent works that employed supervised
algorithms to directly train temporal SNNs on the MNIST dataset. We represent the convolution and pooling

layers by C and P, respectively, and separate layers by -

Table 2. Comparison of the classification accuracies between some recent works that employed supervised
algorithms to directly train temporal SNNs on the MNIST dataset. We represent the convolution and pooling layers

by C and P, respectively, and separate layers by -

Model Structure Accuracy(%)

Mostafa [24] 784-800-10 97.2

Comsa et al. [25] 784-340-10 97.9

Kheradpisheh et al. [12] 784-400-10 97.4

Mirsadeghi et al. [13] 784-350-10 97.4

Zhang et al. [11] 784-800-10 98.5

Mirsadeghi et al. [14] 40C5-P2-1000-10 99.2

Zhang et al. [11] 16C5-P2-32C5-P2-800-128-10 99.4

DS4NN (This work) 64C3-P2-128C3-P2-10 99.3

Fig. 1. The mean required number of spikes in each layer of the proposed CSNN for MNIST dataset

Fig. 1. The mean required number of spikes in each layer of the proposed CSNN for
MNIST dataset

M. Mirsadeghi et al., AUT J. Elec. Eng., 54(2) (2023) 179-190, DOI: 10.22060/eej.2023.21991.5502

184

neuron corresponds to the category of the input image that
fires earliest. This result confirms that the network can make
decisions rapidly by firing a restricted number of neurons at
each layer. Fig.3 shows that it is not required to emit all spikes
presented in the input image to complete the classification
task. According to Fig.3, the membrane potential of the
correct output neuron (5th output neuron corresponds to ‘5’
pattern in test image) crosses the threshold at time step 63.
Therefore, the propagation of a few spikes up to the time step

63 is enough for the network to complete the classification
task.

The confusion matrix of the proposed learning algorithm
is presented in Fig.4 showing that the images related to
different classes are greatly contrasted with each other and
this causes the network to categorize the images with high
accuracy.

On average, the proposed learning algorithm makes
decisions with an accuracy of 99.3% in 15.6 time-step by

Fig. 2. The average firing time of each output neuron over the images of different digit categories of the MNIST dataset in the

proposed CSNN

Fig. 2. The average firing time of each output neuron over the images of different digit
categories of the MNIST dataset in the proposed CSNN

Fig. 3. The membrane potential of all output neurons for ‘5’ pattern in the test image. The network can determine the class of

input image by emitting only input spikes up to the time step 63 and other spikes are ignored

Fig. 3. The membrane potential of all output neurons for ‘5’ pattern in the test image. The network can determine
the class of input image by emitting only input spikes up to the time step 63 and other spikes are ignored

M. Mirsadeghi et al., AUT J. Elec. Eng., 54(2) (2023) 179-190, DOI: 10.22060/eej.2023.21991.5502

185

producing only 1126 spikes in the whole network. It confirms
that the proposed network operates in a sparsely manner
with fast and accurate computation. Also, it overcomes the
occurrence of dead neurons that occur in S4NN due to the use
of a proper method for determining the target firing time of
output neurons, which is shown in Table 3.

Table 3 compares the number of dead neurons in the
proposed method with the number of dead neurons reported
in [12, 24, 25]. In the proposed network, 61% of the neurons
in the whole network do not emit any spikes, which are
called dead neurons. While, if we employ the method of [12]
to determine the target firing times, 95% of neurons in the
whole network become dead neurons and, the method used
in [24] and [25] causes the death of 95.4% of neurons. This
causes a sharp drop in network performance.

3- 2- Fashion-MNIST dataset
Here we employ Fashion-MNIST [37], a more challenging

dataset than MNIST, to better evaluate the proposed learning
algorithm. The Fashion-MNIST dataset contains 28 28×

grey-scale images of clothing items with 10 classes. The
proposed network has the structure of 128C3-P2-128C3-
P2-128C3-10 that consists of three convolutional layers
with 128 neuronal maps and conv-window sizes of 3 3×
, 3 3 128× × and 3 3 128× × respectively. Each layer has a
voltage threshold of 100. First, the learning rate is set to 110−
and decays through the learning epochs by an exponential
function. The initial value of synaptic weights for each
convolutional layer are respectively in ranges [0, 80], [0, 60],
[0, 50], and the value of λ is 0.1. The pooling layers have a
pooling window size of 2 2× with a stride of 2.

In Table 4 we compare the classification accuracy and the
structure of different temporal coding-based SNN methods
on the Fashion-MNIST dataset. [38], [12] and [11] reached
an accuracy of 87.3%, 88.0%, and 88.1% when they only
used a fully-connected SNN with one hidden layer consisting
of 1000 hidden neurons. Up to now, [11] and [14] and this
work are the only implementations of deep single spike-based
SNNs. The proposed DS4NN reaches an accuracy of 95.3%
on the training set and the state-of-the-art accuracy of 91.6%

Fig. 4. The confusion matrix of the proposed CSNN on MNIST dataset

Fig. 4. The confusion matrix of the proposed CSNN on MNIST dataset

Table 3. Comparing the number of dead neurons presented in different methods of deter-
mining target firing timeTable 3. Comparing the number of dead neurons presented in different methods of determining target firing time

Method Num. of dead neurons
Proposed method 61%

Kheradpisheh et al [12] 95%
Mostafa [24] 95.4%

Comsa et al. [25] 95.4%

M. Mirsadeghi et al., AUT J. Elec. Eng., 54(2) (2023) 179-190, DOI: 10.22060/eej.2023.21991.5502

186

on the testing samples.
The average spike time that output neurons fire and the

mean number of spikes produced in the whole network are
listed in Table 5. Similar to the result obtained for MNIST,
to recognize the image class, it is not required to transmit
all spikes of the input image, and, the classification task is
accomplished by sending just a few spikes of the encoded
input image to the network.

In Fig.5, we illustrate the average spike times that output
neurons fire for the Fashion-MNIST dataset. For a few image
categories including “Sandal” against “Sneaker” and “ankle
boot”, the output neuron corresponding to the input image,
does not fire much earlier than other output neurons due to
the resemblance of those classes. This limits the accuracy of
the D4SNN algorithm and is depicted in the confusion matrix
of Fig.6.

Table 4. Comparison of the classification accuracy and network structure reported by several recent works
that employed a supervised algorithm to directly train temporal SNNs on the Fashion-MNIST dataset. We

represent the convolution and pooling layers by C and P, respectively, and separate layers by -

Table 4. Comparison of the classification accuracy and network structure reported by several recent works that
employed a supervised algorithm to directly train temporal SNNs on the Fashion-MNIST dataset. We represent the

convolution and pooling layers by C and P, respectively, and separate layers by -

Model Structure Accuracy(%)
Kheradpisheh et al. [38] 784-1000-10 87.3
Kheradpisheh et al. [12] 784-1000-10 88.0

Zhang et al. [11] 784-1000-10 88.1
Zhang et al. [11] 16C5-P2-32C5-P2-800-128-10 90.1

Mirsadeghi et al. [14] 20C5-P2-40C5-P2-1000-10 92.8
DS4NN (This work) 128C3-P2-128C3-P2-128C3-10 91.6

Table 5. The average firing time (AFT) of the correct output neuron and the mean required number (MRN)
of spikes emitted in all layers of the network over each class of Fashion-MNIST

Table 5. The average firing time (AFT) of the correct output neuron and the mean required number (MRN) of spikes
emitted in all layers of the network over each class of Fashion-MNIST

Category T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot

AFT 37 22 40 30 32 31 45 20 21 17

MRN 2709 1925 2663 1251 1885 1312 2596 1038 3439 1695

Fig. 5. The average firing times of the output neurons in the Fashion-MNIST classes in the proposed CSNN

Fig. 5. The average firing times of the output neurons in the Fashion-MNIST classes in the proposed CSNN

M. Mirsadeghi et al., AUT J. Elec. Eng., 54(2) (2023) 179-190, DOI: 10.22060/eej.2023.21991.5502

187

According to Fig.6, the network confuses ankle boots,
sandals, and sneakers. The same goes for T-shirts, shirts,
dresses, coats, and pullovers, where, the output neurons
corresponding to these categories have similar average firing
times.

4- Discussion
In this paper, we proposed a temporal version of

backpropagation, DS4NN, for training deep single spike-based
SNNs, directly. To this end, we extended S4NN introduced
in [12] and employed it in an SNN with convolutional
architecture (CSNN). In the forward path, the input image is
encoded into a spike train using time-to-first-spike coding and
fed into the network. Then, the convolutional and the max.
pooling operations are applied to the input spike train and
the extracted features are given to the subsequent hidden and
output neurons in the classification layer. Finally, the network
makes decisions by the first spike in the output layer. Here
we used instantaneous synapses and non-leaky IF neurons
as the simplest model of spiking neurons, which reduces
the computational cost of the proposed CSNN. As soon as
the neuron fires, it resets and forgets its state. Therefore,
the corresponding memory can be used by other neurons,
which makes the proposed method memory efficient. In
the backward path, we applied the temporal version of the
backpropagation algorithm. We calculate the temporal
error by subtracting the actual and target firing times, and,

the calculated gradients are backpropagated through the
network to update the synaptic weights by using the Adam
optimizer. To prevent exploding and vanishing gradients,
we normalized the backpropagated gradients at each layer,
and then, we updated the weights. Here we used a dynamic
temporal encoding to define the desired firing times, which
are dependent on the output spike latencies and the category
label of the input image. The output neuron corresponding to
the class label should be forced to fire earlier and the other
output neurons are forced to fire later. Determining the proper
target firing time for each input image has a great impact
on reducing the number of dead neurons and increasing
the classification accuracy of the network. Here to prevent
extreme changes in the weights, the learning rate parameter η
discounts by 10% every 5 epochs.

Spiking neural networks are more suitable for parallel
processing compared to traditional neural networks, due to
the fact that they are asynchronous. However, the temporal
and discrete nature of spiking neurons makes the training of
SNNs difficult. There are some approaches for supervised
learning of temporal SNNs with at most one spike per neuron
[23-25, 11-14].

In single spike-based temporal SNNs [23-25, 11-14],
neurons transmit information by the timing of individual
spikes rather than multi spikes, which makes the network
decide before most neurons have fired. Also, gradients are
backpropagated through the network only at the actual firing

Fig. 6. The confusion matrix of the proposed CSNN on Fashion-MNIST

Fig. 6. The confusion matrix of the proposed CSNN on Fashion-MNIST

M. Mirsadeghi et al., AUT J. Elec. Eng., 54(2) (2023) 179-190, DOI: 10.22060/eej.2023.21991.5502

188

times, which causes the space complexity of each layer to
become O(N), while, in rate-based coding schemes, due to
the backward computation in all steps of the simulation time
the space complexity is O(NT).

Here, we employ the IF neuron model in all layers which
has made the proposed algorithm more computationally
efficient. While, other approaches [11, 13, 24, 25] have
complex neural processing due to the use of complicated
neuron models. In [24], a non-leaky integrate and fire neurons
with an exponentially decaying function was used. [25]
employed spike response neuron model (SRM) with alpha
synaptic function, Zhang et. al in [11] introduced rectified
linear PSP based spiking neurons, and Mirsadeghi et. al [14]
employed piecewise linear neuron models in all layers.

Training of single spike-based SNNs, especially their deep
structure, is a great challenge due to the occurrence of dead
neurons in the middle layers that prevent the backpropagation
of errors [23-25, 12, 13]. There are few works in this area
that try to train deep temporal SNNs with single spike-based
coding [11, 14]. Here we focus on this topic. We improved
the target firing time determination method in S4NN to avoid
the occurrence of dead neurons and reduced the learning rate
by 10% every 5 epochs to avoid large changes in weights
and network divergence. Also, we replaced Adam’s optimizer
with stochastic gradient descent (SGD). Therefore, we
modified the S4NN algorithm for training deep SNNs.

Simulation results on two benchmark datasets of MNIST
and Fashion-MNIST confirm that the proposed DS4NN
algorithm is applicable in deep architectures of SNNs and
it can make quick decisions with high accuracy and by
producing only a few spikes. DS4NN outperforms [11] and
[14] and achieves an accuracy of 99.3% on the MNIST dataset
and an accuracy of 91.6% on the Fashion-MNIST dataset.

5- Conclusion
In this work, we introduced DS4NN for direct training

of deep spiking neural networks. This method is faster,
more energy efficient, and computationally cheaper than
rate-based SNN and ANN due to the sparseness and use of
simple IF neuron models. In single-spike-based temporal
SNNs, each IF neuron is allowed to fire only once, which
helps the network make fast decisions and perform backward
computations in a sparse manner. Also, most of the energy
consumed in neuromorphic hardware is caused by spikes and
calculations in neurons. Therefore, using a simple neuron
model and sparsely performing calculations can greatly
reduce the energy consumption of the hardware.

References
[1]  I. Goodfellow, Y. Bengio, A. Courville, Deep learning,

MIT press, 2016.
[2] B. Rueckauer, S.C. Liu, Conversion of analog to spiking

neural networks using sparse temporal coding, in: 2018
IEEE International Symposium on Circuits and Systems
(ISCAS), 2018, pp. 1-5.

[3] N. Rathi, G. Srinivasan, P. Panda, K. Roy, Enabling deep
spiking neural networks with hybrid conversion and
spike timing dependent backpropagation, arXiv preprint
arXiv:2005.01807, (2020).

[4] A. Sengupta, Y. Ye, R. Wang, C. Liu, K. Roy, Going
Deeper in Spiking Neural Networks: VGG and Residual
Architectures, Frontiers in Neuroscience, 13 (2019).

[5] C. Lee, S.S. Sarwar, P. Panda, G. Srinivasan, K. Roy,
Enabling Spike-Based Backpropagation for Training
Deep Neural Network Architectures, Frontiers in
Neuroscience, 14 (2020).

[6] S. Deng, S. Gu, Optimal conversion of conventional
artificial neural networks to spiking neural networks,
arXiv preprint arXiv:2103.00476, (2021).

[7] J. Allred, K. Roy, L4-Norm Weight Adjustments for
Converted Spiking Neural Networks, arXiv preprint
arXiv:2111.09446, (2021).

[8] J. Wu, Y. Chua, M. Zhang, G. Li, H. Li, K.C. Tan, A
Tandem Learning Rule for Effective Training and Rapid
Inference of Deep Spiking Neural Networks, IEEE
Transactions on Neural Networks and Learning Systems,
(2021) 1-15.

[9]  J. Wu, C. Xu, X. Han, D. Zhou, M. Zhang, H. Li, K.C. Tan,
Progressive Tandem Learning for Pattern Recognition
With Deep Spiking Neural Networks, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(11)
(2022) 7824-7840.

[10] S.R. Kheradpisheh, M. Mirsadeghi, T. Masquelier,
Spiking Neural Networks Trained via Proxy, IEEE
Access, 10 (2022) 70769-70778.

[11] M. Zhang, J. Wang, J. Wu, A. Belatreche, B.
Amornpaisannon, Z. Zhang, V.P.K. Miriyala, H. Qu, Y.
Chua, T.E. Carlson, H. Li, Rectified Linear Postsynaptic
Potential Function for Backpropagation in Deep Spiking
Neural Networks, IEEE Transactions on Neural Networks
and Learning Systems, 33(5) (2022) 1947-1958.

[12] S.R. Kheradpisheh, T. Masquelier, Temporal
backpropagation for spiking neural networks with
one spike per neuron, International Journal of Neural
Systems, 30(06) (2020) 2050027.

[13] M. Mirsadeghi, M. Shalchian, S.R. Kheradpisheh, T.
Masquelier, STiDi-BP: Spike time displacement based
error backpropagation in multilayer spiking neural
networks, Neurocomputing, 427 (2021) 131-140.

[14] M. Mirsadeghi, M. Shalchian, S.R. Kheradpisheh,
T. Masquelier, Spike time displacement based error

M. Mirsadeghi et al., AUT J. Elec. Eng., 54(2) (2023) 179-190, DOI: 10.22060/eej.2023.21991.5502

189

backpropagation in convolutional spiking neural
networks, arXiv preprint arXiv:2108.13621, (2021).

[15] S.R. Kheradpisheh, M. Ganjtabesh, S.J. Thorpe, T.
Masquelier, STDP-based spiking deep convolutional
neural networks for object recognition, Neural Networks,
99 (2018) 56-67.

[16] M. Mozafari, S.R. Kheradpisheh, T. Masquelier, A.
Nowzari-Dalini, M. Ganjtabesh, First-Spike-Based
Visual Categorization Using Reward-Modulated STDP,
IEEE Transactions on Neural Networks and Learning
Systems, 29(12) (2018) 6178-6190.

[17] T. Masquelier, S.J. Thorpe, Unsupervised Learning
of Visual Features through Spike Timing Dependent
Plasticity, PLOS Computational Biology, 3(2) (2007)
e31.

[18] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, S.J.
Thorpe, T. Masquelier, Bio-inspired digit recognition
using reward-modulated spike-timing-dependent
plasticity in deep convolutional networks, Pattern
Recognition, 94 (2019) 87-95.

[19] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini,
T. Masquelier, SpykeTorch: Efficient Simulation of
Convolutional Spiking Neural Networks With at Most
One Spike per Neuron, Frontiers in Neuroscience, 13
(2019).

[20] S.R. Kheradpisheh, M. Ganjtabesh, T. Masquelier, Bio-
inspired unsupervised learning of visual features leads
to robust invariant object recognition, Neurocomputing,
205 (2016) 382-392.

[21] J. Göltz, L. Kriener, A. Baumbach, S. Billaudelle, O.
Breitwieser, B. Cramer, D. Dold, A.F. Kungl, W. Senn,
J. Schemmel, Fast and energy-efficient neuromorphic
deep learning with first-spike times, Nature machine
intelligence, 3(9) (2021) 823-835.

[22] R. Vaila, J. Chiasson, V. Saxena, Feature extraction using
spiking convolutional neural networks, in: Proceedings
of the International Conference on Neuromorphic
Systems, 2019, pp. 1-8.

[23] S.M. Bohte, J.N. Kok, H. La Poutré, Error-
backpropagation in temporally encoded networks of
spiking neurons, Neurocomputing, 48(1) (2002) 17-37.

[24] H. Mostafa, Supervised Learning Based on Temporal
Coding in Spiking Neural Networks, IEEE Transactions
on Neural Networks and Learning Systems, 29(7) (2018)
3227-3235.

[25] I.M. Comsa, K. Potempa, L. Versari, T. Fischbacher, A.
Gesmundo, J. Alakuijala, Temporal Coding in Spiking
Neural Networks with Alpha Synaptic Function, in:
ICASSP 2020 - 2020 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP),
2020, pp. 8529-8533.

[26] S.B.a.O. Shrestha, Garrick, SLAYER: Spike Layer
Error Reassignment in Time, in: Advances in Neural
Information Processing Systems, Curran Associates,
Inc., 2018.

[27] Y. Wu, L. Deng, G. Li, J. Zhu, L. Shi, Spatio-Temporal
Backpropagation for Training High-Performance Spiking
Neural Networks, Frontiers in Neuroscience, 12 (2018).

[28] D.a.S. Huh, Terrence J, Gradient Descent for Spiking
Neural Networks, in: Garnett (Ed.) Advances in Neural
Information Processing Systems, Curran Associates,
Inc., 2018.

[29] L. Zuo, F. Xu, C. Zhang, T. Xiahou, Y. Liu, A multi-
layer spiking neural network-based approach to bearing
fault diagnosis, Reliability Engineering & System Safety,
225 (2022) 108561.

[30] Q. Meng, M. Xiao, S. Yan, Y. Wang, Z. Lin, Z.-Q. Luo,
Training High-Performance Low-Latency Spiking Neural
Networks by Differentiation on Spike Representation, in,
2022, pp. arXiv:2205.00459.

[31] B. Gardner, A. Grüning, Supervised Learning With
First-to-Spike Decoding in Multilayer Spiking Neural
Networks, Frontiers in Computational Neuroscience, 15
(2021).

[32] D.P. Kingma, J. Ba, Adam: A Method for Stochastic
Optimization, in, 2014, pp. arXiv:1412.6980.

[33] E.O. Neftci, H. Mostafa, F. Zenke, Surrogate Gradient
Learning in Spiking Neural Networks: Bringing the
Power of Gradient-Based Optimization to Spiking
Neural Networks, IEEE Signal Processing Magazine,
36(6) (2019) 51-63.

[34] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, W.
Maass, Long short-term memory and learning-to-learn
in networks of spiking neurons, Advances in neural
information processing systems, 31 (2018).

[35] F. Zenke, S. Ganguli, SuperSpike: Supervised Learning
in Multilayer Spiking Neural Networks, Neural
Computation, 30(6) (2018) 1514-1541.

[36] J. Brownlee, A gentle introduction to object recognition
with deep learning, Machine Learning Mastery, 5 (2019).

[37] H. Xiao, K. Rasul, R. Vollgraf, Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning
Algorithms, in, 2017, pp. arXiv:1708.07747.

[38] S.R. Kheradpisheh, M. Mirsadeghi, T. Masquelier,
BS4NN: Binarized Spiking Neural Networks with
Temporal Coding and Learning, Neural Processing
Letters, 54(2) (2022) 1255-1273.

M. Mirsadeghi et al., AUT J. Elec. Eng., 54(2) (2023) 179-190, DOI: 10.22060/eej.2023.21991.5502

190

HOW TO CITE THIS ARTICLE
M. Mirsadeghi, M. Shalchian, S. R. Kheradpisheh, DS4NN: Direct training of deep
spiking neural networks with single spike-based temporal coding, AUT J Electr
Eng, 55(2) (2023) 179-190.
DOI: 10.22060/eej.2023.21991.5502

https://dx.doi.org/10.22060/eej.2023.21991.5502

