[1] M. Grimmer, R. Riener, C.J. Walsh, A. Seyfarth, Mobility related physical and functional losses due to aging and disease-a motivation for lower limb exoskeletons, Journal of neuroengineering and rehabilitation, 16(1) (2019) 1-21.
[2] A. Rodríguez-Fernández, J. Lobo-Prat, J.M. Font[1]Llagunes, Systematic review on wearable lower[1]limb exoskeletons for gait training in neuromuscular impairments, Journal of neuroengineering and rehabilitation, 18(1) (2021) 1-21.
[3] F. Hussain, R. Goecke, M. Mohammadian, Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235(12) (2021) 1375-1385.
[4] T. Wang, B. Zhang, C. Liu, T. Liu, Y. Han, S. Wang, J.P. Ferreira, W. Dong, X. Zhang, A Review on the Rehabilitation Exoskeletons for the Lower Limbs of the Elderly and the Disabled, Electronics, 11(3) (2022) 388.
[5] J. Zhou, S. Yang, Q. Xue, Lower limb rehabilitation exoskeleton robot: A review, Advances in Mechanical Engineering, 13(4) (2021) 16878140211011862.
[6] D. Shi, W. Zhang, W. Zhang, X. Ding, A review on lower limb rehabilitation exoskeleton robots, Chinese Journal of Mechanical Engineering, 32(1) (2019) 1-11.
[7] R. Baud, A.R. Manzoori, A. Ijspeert, M. Bouri, Review of control strategies for lower-limb exoskeletons to assist gait, Journal of NeuroEngineering and Rehabilitation, 18(1) (2021) 1-34.
[8] S. Luo, G. Androwis, S. Adamovich, H. Su, E. Nunez, X. Zhou, Reinforcement Learning and Control of a Lower Extremity Exoskeleton for Squat Assistance, Frontiers in Robotics and AI, 8 (2021).
[9] K. Kiguchi, K. Tamura, Y. Hayashi, Estimation of joint force/torque based on EMG signals, in: 2013 IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS), IEEE, 2013, pp. 20-24.
[10] U. Nagarajan, G. Aguirre-Ollinger, A. Goswami, Integral admittance shaping: A unified framework for active exoskeleton control, Robotics and Autonomous Systems, 75 (2016) 310-324.
[11] G. Aguirre-Ollinger, J.E. Colgate, M.A. Peshkin, A. Goswami, Inertia compensation control of a one-degree[1]of-freedom exoskeleton for lower-limb assistance: Initial experiments, IEEE transactions on neural systems and rehabilitation engineering, 20(1) (2012) 68-77.
[12] G. Lv, J. Lin, R.D. Gregg, Trajectory-free control of lower-limb exoskeletons through underactuated total energy shaping, IEEE Access, 9 (2021) 95427-95443.
[13] T. Zhang, M. Tran, H. Huang, Admittance shaping-based assistive control of SEA-driven robotic hip exoskeleton, IEEE/ASME Transactions on Mechatronics, 24(4) (2019) 1508-1519.
[14] L.D. da Silva, T.F. Pereira, V.R. Leithardt, L.O. Seman, C.A. Zeferino, Hybrid Impedance-Admittance Control for Upper Limb Exoskeleton Using Electromyography, Applied Sciences, 10(20) (2020) 7146.
[15] K. Seo, K. Kim, Y.J. Park, J.-K. Cho, J. Lee, B. Choi, B. Lim, Y. Lee, Y. Shim, Adaptive oscillator-based control for active lower-limb exoskeleton and its metabolic impact, in: 2018 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2018, pp. 6752-6758.
[16] T. Xue, Z. Wang, T. Zhang, M. Zhang, Adaptive oscillator-based robust control for flexible hip assistive exoskeleton, IEEE Robotics and Automation Letters, 4(4) (2019) 3318-3323.
[17] H. Kalani, S.M. Tahamipour-Z, I. Kardan, A. Akbarzadeh, Application of DQN Learning for Delayed Output Feedback Control of a Gait-Assist Hip Exoskeleton, in: 2021 9th RSI International Conference on Robotics and Mechatronics (ICRoM), IEEE, 2021, pp. 341-345.
[18] B. Lim, J. Lee, J. Jang, K. Kim, Y.J. Park, K. Seo, Y. Shim, Delayed Output Feedback Control for gait assistance with a robotic hip exoskeleton, IEEE Transactions on Robotics, 35(4) (2019) 1055-1062.
[19] H. Kalani, A. Akbarzadeh, Application of Reinforcement Learning for Navigation of a Planar Snake Robot in Serpentine Locomotion, Journal Of Applied and Computational Sciences in Mechanics, 26(1) (2015) 97- 118.
[20] E.S. Low, P. Ong, K.C. Cheah, Solving the optimal path planning of a mobile robot using improved Q-learning, Robotics and Autonomous Systems, 115 (2019) 143-161.
[21] X. Wenxia, B. Yu, L. Cheng, Y. Li, X. Cao, Multi[1]fuzzy Sarsa learning-based sit-to-stand motion control for walking-support assistive robot, International Journal of Advanced Robotic Systems, 18(5) (2021) 17298814211050190.
[22] M. Gaeta, V. Loia, S. Miranda, S. Tomasiello, Fitted Q-iteration by Functional Networks for control problems, Applied mathematical modelling, 40(21-22) (2016) 9183-9196.
[23] Y. Ouyang, L. Dong, Y. Wei, C. Sun, Neural network based tracking control for an elastic joint robot with input constraint via actor-critic design, Neurocomputing, 409 (2020) 286-295.
[24] L.C. Melo, M.R.O.A. Máximo, Learning humanoid robot running skills through proximal policy optimization, in: 2019 Latin american robotics symposium (LARS), 2019 Brazilian symposium on robotics (SBR) and 2019 workshop on robotics in education (WRE), IEEE, 2019, pp. 37-42.
[25] A. Konar, I.G. Chakraborty, S.J. Singh, L.C. Jain, A.K. Nagar, A deterministic improved Q-learning for path planning of a mobile robot, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(5) (2013) 1141-1153.
[26] M. Hamaya, T. Matsubara, T. Noda, T. Teramae, J. Morimoto, Learning task-parametrized assistive strategies for exoskeleton robots by multi-task Reinforcement Learning, in: 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2017, pp. 5907-5912.
[27] X. Tu, M. Li, M. Liu, J. Si, H.H. Huang, A data-driven Reinforcement Learning solution framework for optimal and adaptive personalization of a hip exoskeleton, in: 2021 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2021, pp. 10610-10616.
[28] Y. Yuan, Z. Li, T. Zhao, D. Gan, DMP-based motion generation for a walking exoskeleton robot using Reinforcement Learning, IEEE Transactions on Industrial Electronics, 67(5) (2019) 3830-3839.
[29] D. Rastogi, Deep Reinforcement Learning for Bipedal Robots, (2017).
[30] I. Osband, C. Blundell, A. Pritzel, B. Van Roy, Deep exploration via bootstrapped DQN, Advances in neural information processing systems, 29 (2016).
[31] X. Chen, C. Fu, J. Huang, A Deep Q-Network for robotic odor/gas source localization: Modeling, measurement and comparative study, Measurement, 183 (2021) 109725.
[32] X. Xue, Z. Li, D. Zhang, Y. Yan, A deep Reinforcement Learning method for mobile robot collision avoidance based on double dqn, in: 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), IEEE, 2019, pp. 2131-2136.
[33] Y. Liu, Y. Xu, Free Gait Planning of Hexapod Robot Based on Improved DQN Algorithm, in: 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT, IEEE, 2020, pp. 488-491.
[34] L. Rose, M.C. Bazzocchi, G. Nejat, End-to-end deep Reinforcement Learning for exoskeleton control, in: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2020, pp. 4294-4301.
[35] L. Rose, M.C. Bazzocchi, G. Nejat, A model-free deep Reinforcement Learning approach for control of exoskeleton gait patterns, Robotica, 40(7) (2022) 2189- 2214.