[1] B.W. Williams, DC-to-DC converters with continuous input and output power, IEEE Transactions on Power Electronics, 28(5) (2012) 2307-2316.
[2] M. Forouzesh, Y.P. Siwakoti, S.A. Gorji, F. Blaabjerg, B. Lehman, Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications, IEEE Transactions on Power Electronics, 32(12) (2017) 9143-9178.
[3] H. Liu, H. Hu, H. Wu, Y. Xing, I. Batarseh, Overview of high-step-up coupled-inductor boost converters, IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(2) (2016) 689-704.
[4] S.H. Hosseini, T. Nouri, A transformerless step-up dc-dc converter with high voltage gain and reduced voltage stresses on semiconductors, in: 2012 47th International Universities Power Engineering Conference (UPEC), IEEE, 2012, pp. 1-6.
[5] S. Hasanpour, A. Mostaan, A. Baghramian, H. Mojallali, Analysis, modeling, and implementation of a new transformerless semi‐quadratic Buck–boost DC/DC converter, International Journal of Circuit Theory and Applications, 47(6) (2019) 862-883.
[6] S. Hasanpour, Y.P. Siwakoti, A. Mostaan, F. Blaabjerg, New semiquadratic high step-up dc/dc converter for renewable energy applications, IEEE Transactions on Power Electronics, 36(1) (2020) 433-446.
[7] M. Hajilou, S. Khalili, H. Farzanehfard, Single Switch ZVS Transformerless Resonant High Step-up Converter, in: 2021 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), IEEE, 2021, pp. 1-6.
[8] M. Heidari, H. Farzanehfard, M. Esteki, A single-switch single-magnetic core high conversion ratio converter with low input current ripple and wide soft-switching range for photovoltaic applications, IEEE Transactions on Power Electronics, 35(7) (2019) 7226-7234.
[9] T. Nouri, S.H. Hosseini, E. Babaei, J. Ebrahimi, Interleaved high step‐up DC–DC converter based on three‐winding high‐frequency coupled inductor and voltage multiplier cell, IET Power Electronics, 8(2) (2015) 175-189.
[10] K.R. Kothapalli, M. Ramteke, H. Suryawanshi, Coupled Inductor based High Gain ZVS DC–DC Converter for Renewable Energy Systems, in: 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), IEEE, 2020, pp. 1-6.
[11] L.N. Chintalapudi, H. Suryawanshi, P. Nachankar, Soft-Switching High Voltage Gain DC-DC Converter with Coupled Inductor and Voltage Multiplier Rectifier for Renewable Energy Sources, in: IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2019, pp. 1996-2001.
[12] P. Upadhyay, R. Kumar, A ZVS-ZCS quadratic boost converter to utilize the energy of PV irrigation system for electric vehicle charging application, Solar Energy, 206 (2020) 106-119.
[13] S. Hasanpour, A. Baghramian, H. Mojallali, A modified SEPIC-based high step-up DC–DC converter with quasi-resonant operation for renewable energy applications, IEEE Transactions on Industrial Electronics, 66(5) (2018) 3539-3549.
[14] M. Forouzesh, K. Yari, A. Baghramian, S. Hasanpour, Single-switch high step-up converter based on coupled inductor and switched capacitor techniques with quasi-resonant operation, IET Power Electronics, 10(2) (2017) 240-250.
[15] A. Abramovitz, J. Yao, K. Smedley, Derivation of a family of high step-up tapped inductor SEPIC converters, Electronics Letters, 50(22) (2014) 1626-1628.
[16] M. Amirbande, K. Yari, M. Forouzesh, A. Baghramian, A novel single switch high gain DC-DC converter employing coupled inductor and diode capacitor, in: 2016 7th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), IEEE, 2016, pp. 159-164.
[17] S. Hasanpour, Y. Siwakoti, F. Blaabjerg, Hybrid cascaded high step-up DC/DC converter with continuous input current for renewable energy applications, IET Power Electronics, 13(15) (2020) 3487-3495.
[18] R. Fani, E. Farshidi, E. Adib, A. Kosarian, Analysis, Design, and Implementation of a ZVT High Step-Up DC–DC Converter With Continuous Input Current, IEEE Transactions on Industrial Electronics, 67(12) (2019) 10455-10463.
[19] M. Eskandarpour Azizkandi, F. Sedaghati, H. Shayeghi, F. Blaabjerg, Two‐and three‐winding coupled‐inductor‐based high step‐up DC–DC converters for sustainable energy applications, IET Power Electronics, 13(1) (2020) 144-156.
[20] K.-C. Tseng, J.-T. Lin, C.-C. Huang, High step-up converter with three-winding coupled inductor for fuel cell energy source applications, IEEE Transactions on Power Electronics, 30(2) (2014) 574-581.
[21] X. Hu, J. Wang, L. Li, Y. Li, A three-winding coupled-inductor DC–DC converter topology with high voltage gain and reduced switch stress, IEEE Transactions on Power Electronics, 33(2) (2017) 1453-1462.
[22] A.M.S.S. Andrade, L. Schuch, M.L. da Silva Martins, Analysis and design of high-efficiency hybrid high step-up DC–DC converter for distributed PV generation systems, IEEE Transactions on Industrial Electronics, 66(5) (2018) 3860-3868.
[23] A. Farzin, M. Etemadi, A. Baghramian, A New High-Step-Up DC-DC Converter using Three-Windings Transformer and Soft-Switching for use in Photovoltaic Systems, in: 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), IEEE, 2019, pp. 207-212.
[24] S.S. Dobakhshari, S.H. Fathi, J. Milimonfared, M.Z. Tazehkand, A Dual Active Clamp DC–DC Converter With High Voltage Gain, IEEE Transactions on Power Electronics, 36(1) (2020) 597-606.
[25] M. Khalilzadeh, K. Abbaszadeh, Non-isolated high step-up DC–DC converter based on coupled inductor with reduced voltage stress, IET Power Electronics, 8(11) (2015) 2184-2194.
[26] M.E. Azizkandi, F. Sedaghati, H. Shayeghi, F. Blaabjerg, A high voltage gain DC–DC converter based on three winding coupled inductor and voltage multiplier cell, IEEE Transactions on Power Electronics, 35(5) (2019) 4558-4567.
[27] A. Farakhor, M. Abapour, M. Sabahi, S. Gholami Farkoush, S.-R. Oh, S.-B. Rhee, A study on an improved three-winding coupled inductor based dc/dc boost converter with continuous input current, Energies, 13(7) (2020) 1780.