[1]
K. Yasumoto, Electromagnetic theory and applications for photonic crystals, CRC press, 2005.
[2]
T. J. Cui and W. C. Chew, “Fast algorithm for electromagnetic scattering by buried 3-D dielectric objects of large size”, IEEE Trans. Geosci. Remote Sens., Vol. 37, No.5, pp. 2597- 2608, 1999.
[3]
M. Pastorino, Microwave imaging, Vol. 208, John Wiley & Sons, 2010.
[4]
C. Hafner, “Boundary methods for optical nano structures”, Phys. Status Solidi (b), Vol. 244, No.10, pp. 3435- 3447, 2007.
[5]
Y. Eremin and T. Wriedt, “New scheme of the Discrete Sources Method for light scattering analysis of a particle breaking interface”, Comput. Phys. Commu., Vol. 185, No.12, pp. 3141- 3150, 2014.
[6]
A. Alparslan and C. Hafner, “Analysis of photonic structures by the multiple multipole program with complex origin layered geometry Green's functions”, J. Comput. Theor. Nanos., Vol. 9, No.3, pp. 479- 485, 2012.
[7]
E. Moreno, D. Erni, C. Hafner and R. Vahldieck, “Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures”, J. Opt. Soc. Am. A, Vol. 19, No.1, pp. 101- 111, 2002.
[8]
E. Eremina, Y. Eremin and T. Wriedt, “Computational nano-optic technology based on discrete sources method”, J. Mod. Opt., Vol. 58, No.5-6, pp. 384- 399, 2011.
[9]
T. Jalali and D. Erni, “Highly confined photonic nanojet from elliptical particles”, J. Mod. Opt., Vol. 61, No.13, pp. 1069- 1076, 2014.
[10]
T. Wriedt, Generalized Multipole Techniques for Electromagnetic and Light Scattering, Elsevier Science B.V., 1999.
[11]
C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics, Artech House, Boston, 1990.
[12]
K. I. Beshir and J. E. Richie, “On the location and number of expansion centers for the generalized multipole technique”, IEEE Trans. Electromagn. Compat., Vol. 38, No.2, pp. 177- 180, 1996.
[13]
T. Sannomiya, J. Vörös and C. Hafner, “Symmetry decomposed multiple multipole program calculation of plasmonic particles on substrate for biosensing applications”, J. Comput. Theor. Nanos., Vol. 6, No.3, pp. 749- 756, 2009.
[14]
C. V. Hafner, “Beiträge zur Berechnung der Ausbreitung elektromagnetischer Wellen in zylindrischen Strukturen mit Hilfe des Point-Matching-Verfahrens”, 1980.
[15]
A. Bandyopadhyay, C. Tomassoni, M. Mongiardo and A. Omar, “Generalized multipole technique without redundant multipoles”, Int. J. Numer. Model.: El., Vol. 18, No.6, pp. 413- 427, 2005.
[16]
Y. Leviatan, “Analytic continuation considerations when using generalized formulations for scattering problems”, IEEE Trans. Antennas Prpag., Vol. 38,
No.8, pp. 1259- 1263, 1990.
[17]
J. E. Richie, “Application of spatial bandwidth concepts to MAS pole location for dielectric cylinders”, IEEE Trans. Antennas Prpag., Vol. 59, No.12, pp. 4861- 4864, 2011.
[18]
P. Leuchtmann, “The Multiple Multipole Program (MMP): Theory, Practical Use and Latest Features”, ACES. Short course notes, Vol. 121, 1995.
[19]
P. Regli, “Automatic Expansion Setting for the 3D-MMP Code”, in Conf. Proc. 8th Annu. Rev. Progress in Applied Computational Electromagnetics; at the Naval Postgraduate School, Monterey, CA, March 16-20, 1992, 1992.
[20]
P. Leuchtmann, “Automatic computation of optimum origins of the poles in the multiple multipole method (MMP-method)”, IEEE Trans. Magn., Vol. 19, No.6, pp. 2371- 2374, 1983.
[21]
C. Hafner, Post-modern electromagnetics, John Wiley & Sons, 1999.
[22]
J. Richie, “MAS Pole Location and Effective Spatial Bandwidth of the Scattered Field”, IEEE Trans. Antennas Prpag., Vol. 58, No.11, pp. 3610- 3615, 2010.
[23]
M. G. Imhof, “Computing the elastic scattering from inclusions using the multiple multipoles method in three dimensions”, Geophys. J. Int., Vol. 156, No.2, pp. 287- 296, 2004.
[24]
M. G. Imhof, “Multiple multipole expansions for elastic scattering”, J. Acoust. Soc. Am., Vol. 100, No.5, pp. 2969- 2979, 1996.
[25]
R. Millar, “The Rayleigh hypothesis and a related least-squares solution to scattering problems for periodic surfaces and other scatterers”, Radio Sci., Vol. 8, No.8, 9, pp. 785- 796, 1973.
[26]
H. Krim and M. Viberg, “Two decades of array signal processing research: the parametric approach”, IEEE Signal Process. Mag., Vol. 13, No.4, pp. 67- 94, 1996.
[27]
E. A. Marengo, F. K. Gruber and F. Simonetti, “Time-reversal MUSIC imaging of extended targets”, IEEE Trans. Image Process., Vol. 16, No.8, pp. 1967- 1984, 2007.
[28]
J. C. Mosher and R. M. Leahy, “Recursive MUSIC: a framework for EEG and MEG source localization”, IEEE Trans. Biomed. Eng., Vol. 45, No.11, pp. 1342- 1354, 1998.
[29]
A. Wirgin, “The inverse crime”, Arxiv preprint math-ph/0401050, 2004.
[30]
O. M. Bucci and G. Franceschetti, “On the spatial bandwidth of scattered fields”, IEEE Trans. Antennas Propag., Vol. 35, No.12, pp. 1445- 1455, 1987.
[31]
K. Siddiqi and S. Pizer, Medial representations: mathematics, algorithms and applications, Vol. 37, Springer Science & Business Media, 2008.
[32]
T. Jalali, “Calculation of a nonlinear eigenvalue problem based on the MMP method for analyzing photonic crystals”, J. Opt., Vol. 16, No.12, p. 125006, 2014. [33] U. Jakobus, H.-O. Ruoß and F. Landstorfer, “Analysis of electromagnetic scattering problems by an iterative combination of MoM with GMT using MPI for the communication”, Microw. Opt. Technol. Lett., Vol. 19, No.1, pp. 1- 4, 1998.