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ABSTRACT 

A new guideline for proper allocation of multipoles in the multiple multipole method (MMP) is proposed. 

In an „a posteriori‟ approach, subspace fitting (SSF) is used to find the best location of multipole expansions 

for the two dimensional dielectric scattering problem. It is shown that the best location of multipole expansions 

(regarding their global approximating power) coincides with the medial axis of the object. The subspace 

analysis is performed for various scenarios including objects with different shapes and sizes relative to the 

wavelength, different permittivities and both TEz and TMz polarizations. Numerical examples for both TEz and 

TMz cases are also presented. The results are in a very good agreement with the finite element method (FEM) 

results. Two challenging test cases are presented. First, a large object compared to the wavelength and second, 

a small object with field singularities close to the boundary. Accuracy of the final MMP results shows the 

effectiveness of the new allocation rule. 
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1- INTRODUCTION 

Computational electromagnetics has played a key role 

in the development of emerging technologies in the past 

three decades [1]. One important area of research for these 

developments is the analysis of scattering of 

electromagnetic waves from dielectric objects. The 

application areas vary greatly and include the remote 

sensing of buried objects [2], the microwave imaging of 

biological tissues [3], and the design and analysis of 

optical and photonic devices [1, 4]. 

The generalized multipole technique (GMT) is a 

powerful and accurate mesh-free method for solving 

time-harmonic electromagnetic field problems, especially 

for the analysis of scattering from objects with smooth 

boundaries [1, 4, 5, 6, 7, 8, 9]. The essence of the GMT is 

to approximate the solution by a finite linear combination 

of fields of multipole sources [10]. Additionally, due to the 

use of the generalized point matching [11], the GMT 

solutions do not involve any integration [12, 13]. One of 

the most popular variants of the GMT is the multiple 

multipole method (MMP) which is introduced by Hafner 

in 1980 as a generalization of the Mie theory [14]. In this 

method, the fields are approximated by multipole 

expansions about different origins [10]. 

A crucial step in the GMT is the allocation of 

approximating sources [15], which has a significant effect 

on the convergence and accuracy of solutions [11, 16, 17]. 

For the MMP, the problem of multipole placement has 

been addressed in several publications [7, 11, 18, 19]. 

Generally, the problem could be handled by either a priori 

or a posteriori approach. In the former approach one tries 

to allocate the expansions based on physical and 

geometrical specifications of the problem while the latter 

approach involves analysis of fields from previously 

solved problems. As an example, an optimization 

algorithm were proposed by Leuchtmann for the 

electrostatic case where multipoles were added one by one 

and selected iteratively by minimizing the residual error 

along the boundary [20]. The algorithm gives 

monotonically convergent results. Yet it was abandoned 

since its computational burden was significantly high [21]. 

Indeed, the optimum location depends on detailed 

specifications of the scattering problem such as the 

incident field, the object‟s geometry, and electromagnetic 

properties of the corresponding domains [7, 17, 21, 22]. 

Hence, determination of the best position for multipoles‟ 

origins is not trivial. 

A review of previously developed allocation 

algorithms shows that the most effective algorithms are 

based on a priori approaches [7, 11, 19, 21, 18]. A good 

example is the geometric rules provided by Hafner [11], 

implemented in allocation algorithms by Regli [19], and 

refined for special cases by Moreno [7]. 

The Hafner‟s geometric rules of thumb rely on the so 

called domain of greatest influence of a multipole [11]. 

This domain is defined as a disk centered at the 

multipole‟s origin with its radius equal to a constant factor 

times the distance between the multipole‟s origin and the 

objects boundary [11]. The underlying assumption is that 

the behavior of multipole fields along the boundary is 

local, that is the amplitude of a multipole‟s field is 

negligible outside a neighborhood of origin of the 

multipole [23, 24]. This requires the distance between 

origins of multipoles and the object‟s boundary to be at 

most about one wavelength [7]. It is clear that the 

amplitude of multipole fields along the boundary depends 

on their orders too. Therefore, defining the same influence 

domain for multipoles with different orders reduces the 

robustness and reliability of the final algorithms. 

Using optimization approaches it could be shown that 

the best location for placing a multipole inside a circular 

domain is at the center of the circle [21]. The solution is 

then identical to the Mie solution for circular cylindrical 

objects. However, when it comes to the scattering from 

non-circular boundaries, the allocation rules seem to be 

too heuristic without proper justification.  

In this paper, by using an a posteriori approach for 

dealing with the allocation problem in the MMP, we 

introduce a simple and justified rule. The proposed 

guideline then could be used as a basis for algorithms in an 

a priori approach. Here, the expansion allocation problem 

is investigated in the framework of a parameter estimation 

method. The novel application of the subspace-fitting 

method to this problem reveals where the multipole 

subspace is best fitted to the signal space of the scattered 

field. The results show that for different dielectric objects 

a common geometric entity that coincides with the medial 

axis of the objects could be regarded as the desired 

location of multipole‟s origin. 

The paper is outlined as follows. Section 2 includes a 

brief introduction of the MMP method. The subspace 

analysis is presented in Section 3. Different scattering 

problems are then solved by exploiting the proposed idea 

in Section 4 followed by the paper‟s conclusions in 

Section 5. 

2- MULTIPLE MULTIPOLE METHOD 

The general geometry of the problem for the two 

dimensional scattering form a single dielectric object is 

shown in Fig. 1. The scatterer is assumed to be linear, 

homogeneous and non-magnetic. Here, an object with the 

relative permittivity of    is illuminated by the incident 

field      in the surrounding free-space. Based on the 

polarization of the incident field,      could represent 

either the electric field (TMz), or the magnetic field (TEz). 

Recalling that the scattered field is defined as the 

difference between the total field in the presence and the 

absence of the object, the scattering problem is to find the 

scattered field      given the incident field     . 

In the MMP framework, the scattering problem is 

solved by approximating the scattered field exterior and 

the total field interior to the object by a linear combination 

of truncated multipole expansions [11]. Accordingly, 

assuming the time dependence of         , the scattered 

field is approximated by   expansions as 
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where   and     are the position vectors of the 

observation point and the expansion centers, respectively; 

  
   

    represents the Hankel function of the second kind 

of order       denotes the truncation order of the  -th 

expansion, and    is the wavenumber in the scatterer. 

Since multipoles are singular at the origin, the expansion 

centers must lie outside the domain of interest [11]. Hence, 

similar to the scattered field in (1), the total field inside the 

dielectric object is approximated by a set of multipolar 

sources placed outside the object and    interchanged by 

  . 

 
Fig. 1. Two dimensional configuration of the scattering 

problem. 

In each domain, the corresponding multipoles satisfy 

the time harmonic Maxwell‟s equations. Accordingly, to 

determine the unknown coefficients in Eq. (1), one only 

needs to enforce the relevant boundary conditions. Note 

that multipole functions are independent of each other 

[25], but they are not orthogonal. As a result, while the 

point matching method is a popular choice in the MMP, 

the number of matching points should be selected such that 

the resulting equation system is overdetermined [11]. The 

over-determination factor is usually considered to be about 

2 or 3 [11, 21]. 

3- SUBSPACE FITTING 

When solving a problem using the MMP, three sets of 

parameters should be initially set: expansion centers, 

expansion orders, and matching points. Among these 

parameters, the allocation of the expansion centers is the 

most important. Indeed, the two other parameter sets could 

be determined based on simple and efficient rules [7, 11]. 

However as we stated earlier, the search for the optimum 

set of parameters is not trivial and could be very 

computationally demanding [21]. In this section, based on 

results of a subspace fitting analysis, a new guideline is 

proposed and justified for the problem of allocation of 

multipoles‟ origins in the MMP. 

Let us consider a set of   linearly independent plane 

wave incident fields. For each incident field, we have the 

scattered field     , that is represented by   samples on 

the object‟s boundary. These samples are arranged in a 

matrix       . Moreover, let        be a matrix 

whose columns are position vectors of the expansion 

centers. Subsequently, by applying the signal subspace 

fitting (SSF) [26, 7], the problem is formulated as the 

following least-squares minimization  

             
 

‖        ‖   (2)  

where   is the vector of coefficients and      denotes 

the discretization of multipole functions in Eq. (1). The 

Frobenius norm is also denoted by ‖ ‖ . Additionally, the 

matrix    denotes the set of first   left singular vectors 

of    that span the signal subspace. The value of   is 

determined by locating the knee point in the logarithmic 

plot of the singular values of   [27]. As it is shown by 

Mosher et al. [28], the minimization problem in Eq. (2) is 

equivalent to the following maximization problem 

            
 

‖  
   ‖ 

  (3)  

where    represents the matrix of left singular vectors of 

     that correspond to its non-zero singular values. 

Then, we can define an SSF pseudo-spectrum by 

           (
‖  

   ‖ 

‖  ‖ 

)  (4)  

As a matter of fact, this spectrum provides a global 

measure of the approximation error for a multipole 

expansion centered at the point   . 

Now we consider the scattered field of various 

dielectric objects in free space. The specifications of these 

cases are listed in Table 1. For all the cases, plane wave 

incident fields are coming from     directions 

(uniformly spaced over 360°). To avoid committing the 

so-called inverse crime [29], the scattered fields are 

computed by using a finite element method (FEM). Since 

we are dealing with the scattered field, expansion centers 

must be inside the object. Since the scattered field is 

effectively band-limited [26], the expansion order is set to 

  
   

 
. Subsequently, the resulting pseudo-spectrums 

are shown in Fig. 2. The results show that a multipole 

expansion better matches the signal subspace by moving 

farther from the boundary up to a critical point. This is not 

surprising since we expect the local behavior of multipoles 

to be reduced as their distance from the boundary 

increases. 

Interestingly, the critical point belongs to a set of 

points with a special property. Let   be a point on the 

object‟s boundary, then we associate with   the set of all 

points inside the object whose closest point on the 

boundary is  . The critical point is then the associated 

point that is the farthest point from  . Indeed, this is the 

definition of the medial axis of the object [30]. The radius 

of the maximal disk (centered at the medial point and 

tangential to the boundary) is called the medial radius [31]. 

The medial axis of each object is also overlaid on its 

corresponding SSF spectrum in Fig. 2. From this figure, it 

is evident that in order to approximate the desired field at 
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(a) (b) 

  

(c) (d) 

 

(e) 

Fig. 2. The SSF spectrum (as defined by Eq. (4)) for various dielectric scatterers. The corresponding medial axis (solid) for 

each boundary (dashed) is overlaid on the SSF spectrum. 

TABLE 1. DESCRIPTION OF THE TEST CASES IN FIG. 2. 

Case ID    Polarization r 

a 2 TM 68 

b             TE 13 

c 2 TM 48 

d            TM 33 

e             TE 23 
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each point on the boundary, the best location for a 

multipole expansion is almost on the medial axis. Note 

that the cases in Table 1 include objects with a wide range 

of sizes relative to the wavelength, different dielectric 

constants, and both the TE and TM polarizations. 

Consequently, the above observation is used to delineate 

the central idea of our expansion allocation guideline, that 

is, regarding the global approximation power of multipole 

expansions, the medial axis is the best location for an 

expansion. 

Placing multipoles farther from the boundary 

increases their coverage domain [18]. As a result, the 

whole boundary is covered by a less number of multipoles 

when they are allocated on the medial axis. Consequently, 

by placing multipoles on the medial axis of the object the 

efficiency and accuracy of the MMP are improved at the 

same time. 

The multipole allocation algorithm starts at the medial 

point corresponding to the maximum medial radius. 

Subsequently, those parts of the medial axis that lie inside 

the corresponding maximal disk are excluded from further 

processing. The algorithm repeats until processing all 

parts of the medial axis. Then, orders of selected 

multipoles are determined according to their 

corresponding medial radius, i.e. the larger the medial 

radius, the larger truncation order is assigned to the 

multipole expansion. 

4- NUMERICAL SIMULATION 

In this section two examples are presented to show the 

power of the MMP equipped with the allocation algorithm 

based on the proposed guideline. The first example is the 

full-wave simulation of a large object with the extent of 

about      at        [nm]. As shown in Fig. 3, the 

object is an elliptic micro-lens. The major and minor 

semi-axes of the ellipse are    [um] and   [um], 

respectively. The relative permittivity of the object is 

       . A TMz polarized incident field illuminates the 

object from the bottom. 

Numerical simulation of such a large object is 

challenging since the number of unknowns and the 

computational burden of the solution may increase 

significantly with an improper set of multipole 

expansions. Additionally, MMP matrices are dense and it 

is important to select multipoles in such a way that it does 

not lead to a singular system matrix. Hence, the accuracy 

of the results will show the effectiveness of the proposed 

approach. 

The distribution of multipoles along the medial axis 

(i.e. the line between the two foci) is shown in Fig. 3. Form 

Fig. 4 it is evident that the solution is converged for an 

expansion with a total order of about 3300. Subsequently, 

the distribution of the magnitude of the Poynting vector is 

compared with the FEM results in Fig. 5 which shows a 

very good agreement. 

 
Fig. 3. The selected multipoles (markers) on the medial axis 

of the ellipse (solid) inside the object’s boundary (dashed). 

 

Fig. 4. Convergence of the MMP solution for the elliptic 

object. 

 

(a) 

 

(b) 

Fig. 5. The distribution of the Poynting vector’s magnitude 

(in [W/m2]). a) MMP, b) FEM. 
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The next example is a triangle shaped silver 

nano-particle that its scattering properties is investigated 

in [7]. As shown in Fig. 6, the left and bottom sides of the 

triangle are 20 [nm] and 10 [nm], respectively. The 

relative permittivity of silver at the wavelength        

[nm] is assumed to be               . The object is 

illuminated by a TEz plane wave coming from the bottom 

left with its wavevector perpendicular to the triangle‟s 

hypotenuse. Like the previous example, the numerical 

modelling of the electromagnetic wave scattering by this 

particle is challenging since near the edges of the particle 

the electromagnetic fields are singular. In such a case, the 

accuracy of the solution depends on the density of 

multipoles near the edges. The distribution of the allocated 

multipoles along the medial axis of the triangle is shown in 

Fig. 6. As shown, close to the edge of the scatterer the 

density of multipoles is much higher than other parts of the 

object. As a result, we expect the MMP to be able to 

accurately model variations of the electromagnetic fields 

close to the edges. 

The problem is solved with an average relative error 

of         along the boundary and the convergence plot 

is depicted in Fig. 7. Similar to the results given by 

Moreno et al. [7], the magnitude of the electric field 

normalized to the incident field is depicted on a vertical 

line segment with      [nm] and          [nm] in 

Fig. 8. The MMP result is compared with the FEM one 

which shows a very good agreement. .The presented 

results show that the MMP equipped with the new 

allocation rule, could be used to readily solve the problem 

with a high accuracy. 

 

Fig. 6. The selected multipoles (markers) on the medial axis 

of the triangular scatterer (solid) inside the object’s 

boundary (dashed). The inset plot shows the distribution of 

multipoles close to the top corner. 

 

Fig. 7. Convergence of the MMP solution for the triangular 

object. 

 

Fig. 8. The magnitude of the electric field computed by the 

MMP (dash dotted) compared to the FEM solution (solid). 

5- CONCLUSIONS 

The problem of multipole allocation in the MMP 

method is addressed by proposing a new allocation rule. 

The new guideline is justified using subspace fitting 

analysis which makes it different form present heuristic 

rules of thumb. The results show that placing multipoles 

on the medial axis of the scatterer increases their 

effectiveness which means a smaller number of multipole 

expansions and more accurate results. Two numerical 

examples are presented to show the validity and accuracy 

of the results by using the new rule for the allocation of 

multipole sources of the scattered field. 
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