Capacity Enhancement of Ad Hoc Networks using a New Beamforming Scheme Based on ESPAR

Document Type : Research Article

Authors

Abstract

This paper proposes a new smart antenna beamforming scheme based on electronically steerable parasitic array radiator (ESPAR). The proposed method is capable of providing better capacity compared to the conventional ESPAR. The termination of each antenna element in this structure comprises a PIN diode in addition to a varactor. Using PIN diode besides the varactor provides more degrees of freedom which lead to better interference suppression. Moreover, in the proposed method the required tunable impedance range of the varactors is dramatically reduced. The optimal values of the tunable loads in each simulation scenario repetition are attained iteratively using steepest descent method with a maximum cross correlation coefficient criterion. Simulation results show that the proposed scheme outperforms the conventional ESPAR technique with respect to interference suppression and capacity enhancement. To further validate the beamforming ability of the proposed method, a testbed was fabricated. Measurement results confirm that the proposed method can provide an acceptable beamforming capability close to the simulated beam.

Keywords


[1]
Seong-Gu Lee; Bum-sik Park; Deok-Hwan Lee; Dong-Hun Lee; Hak-Lim Ko; JeongGil Ko, „Performance analysis of beamforming techniques in ad-hoc communication between moving vehicles,‟ Communications, 2007. APCC 2007. Asia-Pacific Conference on , vol., no., pp.185,188, 18-20 Oct. 2007.
[2]
Ananthi, G.; Annie, S.S.; Thiruvengadam, S.J., „Performance analysis of MIMO ad-hoc networks with quantized beamforming and imperfect channel state information,‟ Signal Processing and Communications (SPCOM), 2010 International Conference on , vol., no., pp.1,5, 18-21 July 2010.
[3]
H. Kaibin, J.G. Andrews, G. Dongning, R.W. Heath, et al, „Spatial Interference Cancellation for Multiantenna Mobile Ad Hoc Networks‟, IEEE Trans. on Information Theory, Vol. 58 , No. 3, 2012.
[4]
C. Dau-Chyrh, H. Cheng-Nan, „Smart Antennas for Advanced Communication Systems‟, Proc. of the IEEE. Vol. 100, No. 7, 2012.
[5]
A. Anbaran, A. Mohammadi, A. Abdipour, „Capacity Enhancement of Ad Hoc Networks using a New Single-RF Compact Beamforming Scheme‟, IEEE Trans. on Antennas & Propagation, to be published
[6]
R. F. Harrington, „Reactively controlled directive arrays,‟ IEEE Trans. Antennas Propagat., Vol. AP-26, pp. 390–395, May 1978.
[7]
Liu Hai-Tao, S. Gao, Loh Tian-Hong, „Electrically Small and Low Cost Smart
Antenna for Wireless Communication‟, IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 2012.
[8]
O.N. Alrabadi, C.B. Papadias, A. Kalis, N. Marchetti, et al, „MIMO transmission and reception techniques using three-element ESPAR antennas‟, IEEE Communications Letters, Vol. 13, No. 4, 2009.
[9]
S.A. Mitilineos, K.S. Mougiakos, Thomopoulos, C.A. Stelios, „Design and Optimization of ESPAR Antennas via Impedance Measurements and a Genetic Algorithm‟, IEEE Antennas and Propagation Magazine, Vol. 51, No. 2, 2009.
[10]
H. Liu, S. Gao. ; T. Hong Loh „Compact MIMO Antenna With Frequency Reconfigurability and Adaptive Radiation Patterns‟, IEEE Antennas and Wireless Propagation Letters, Vol. 12, 2013.
[11]
K. Gyoda and T. Ohira, „Design of Electronically Steerable Passive Array Radiator (ESPAR) Antennas‟, IEEE Antennas and Propagation Society International Symposium, Vol. 2, pp. 922-925, July 2000.
[12]
A. Mohammadi, F.M. Ghannouchi, „RF Transceiver Design for MIMO Wireless Communications‟, Springer publisher, Berlin, 2012.
[13]
A. Kalis, A. Kanatas, C. Papadias, „Parasitic Antenna Arrays for Wireless MIMO Systems‟, ISBN 978-1-4614-7998-7, Springer, 2014
[14]
A. Anbaran, A. Mohammadi, A. Abdipour, „Capacity Enhancement in Vehicle to Roadside Networks Using ESPAR Technique‟, IEEE International Wireless Symposium (IWS), 14-18 April 2013.
[15]
Y. Toor, P. Muhlethaler, A. Laouiti, and A. de La Fortelle, „Vehicle ad hoc networks: Applications and related technical issues,‟ IEEE Communications Surveys & Tutorials, vol. 10, no. 3, pp. 74–88, third quarter 2008.
[16]
S. Bandyopadhyay, S. Roy, T. Ueda, „Enhancing the Performance of Ad Hoc Wireless Networks with Smart Antennas,‟ ISBN 978-0-8493-5081-8, Auerbach Publications. 2006.
[17]
R. Schlub, J. Lu and T. Ohira, „Seven-Element Ground Skirt Monopole ESPAR Antenna Design From a Genetic Algorithm and the Finite Element Method,‟ IEEE Transactions on Antennas and Propagation, Vol. 51, No. 11, pp.3033-3039, Nov. 2003.
[18]
H. Liu, T. H. Loh and S. Gao, "Compact Low-Cost Smart Antenna for Wireless Communications", 3th European Wireless Technology (EuWiT) Conference (as part of the European Microwave Week), Paris, France, 26th Sept. – 1st Oct. 2010.
[19]
H. Liu, S. Gao, and T. H. Loh, "Small Smart Antenna Composed of Reconfigurable Inverted F-type Antenna", 2009 International Conference on Microwave Technology & Computational Electromagnetics (ICMTCE), Beijing, China, 3rd – 6th Nov. 2009.
[20]
C. A. Balanis, „Antenna Theory: Analysis and Design‟, 2nd ed. New York: Wiley, 1997, pp. 127–257.
[21]
C. Sun, A. Hirata, T. Ohira, N. C. Karmakar, „Fast Beamforming of Electronically Steerable Parasitic Array Radiator Antennas: Theory and Experiment‟, IEEE Trans. on Ant. and Propagation, Vol. 52, No. 7, pp 1819-1832, July 2004.