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ABSTRACT: The probability hypothesis density (PHD) filter suffers from lack of precise estimation 
of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of 
the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the 
posterior cardinality distribution. While there are a few new approaches to enhance the Sequential 
Monte Carlo (SMC) implementation of the PHD filter, current SMC implementation for the CPHD filter 
is limited to choose only state transition density as a proposal distribution. In this paper, we propose 
an auxiliary particle implementation of the CPHD filter by estimating the linear functionals in the 
elementary symmetric functions based on the unscented transform (UT). Numerical simulation results 
indicate that our proposed algorithm outperforms both the SMC-CPHD filter and the auxiliary particle 
implementation of the PHD filter in difficult situations with high clutter. We also compare our proposed 
algorithm with its counterparts in terms of other metrics, such as run times and sensitivity to new target 
appearance.
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1- Introduction
In the context of the multi-target tracking (MTT), we have to 
estimate the set of unknown target states and its time-varying 
cardinality. Mahler provides an excellent context to cope with 
these difficulties. This is done by introducing the concept of 
finite set statistics (FISST) [1-3]. The major drawback of 
the FISST Bayes filter is facing manifold integrals of the 
multi target states in high dimensional space, which makes 
practical implementations of tracking system impossible. A 
first moment approximation to the full multi-target Bayes 
recursion, namely the probability hypothesis density (PHD), 
is introduced by Mahler [4] to propagate the posterior intensity 
function rather than the multi-target posterior density in time 
and reduce computational expense [4]. 
In order to emerge higher moment information into the 
PHD recursion, Mahler suggested a generalization of the 
PHD filter named the cardinalized PHD (CPHD) filter 
which simultaneously propagates the cardinality distribution 
together with the intensity function [5, 6]. There are many 
application areas for this powerful filtering strategy such as 
image tracking [7], sonar [8] , extended target tracking [9], 
and data fusion [10, 11]. Recently, the CPHD filter is applied 
in the distributed multi-sensor tracking where sensors share 
their incomplete knowledge of moving targets and help each 
other to improve the estimation of targets’ state vector [12,13]. 
The sequential Monte Carlo (SMC) implementation of the 
PHD and CPHD filters are first introduced in [2, 14, 15] 
using state transition density as a proposal distribution. 
Consequently, there are a few attempts made to enhance the 
SMC implementation of the PHD filter [16-18]. However, 
despite the supposed superiority of the CPHD over the PHD 

filter, to the best knowledge of the author, there is no apparently 
parallel approach for the auxiliary particle implementation of 
the CPHD filter. This is because the CPHD filter has more 
complex recursion compared to the PHD filter. Our goal 
is to make this filter efficiently implemented by exploiting 
the state-of-art auxiliary variable particle filtering (AVPF) 
algorithm and this  paper is an extension to our previous work 
[19]. However, the main difference between this paper and 
previous work [19] is our focus on construction of proposal 
distributions. In this paper, in order to design proposal 
distributions, we pay attention to the relation of newly born 
targets with both detected and undetected target spaces. The 
spaces for newly born and persistent targets are explored 
more rigorously by using potential functions to generate more 
promising particles. 
In this paper we suggest the auxiliary particle implementation 
of the CPHD filter which significantly outperforms the 
original SMC implantation of the CPHD filter proposed in 
[15]. To that end, we first simplify the recursion equation of 
the CPHD filter in a way that is suitable to apply auxiliary 
particle filter principle for implementation of the CPHD filter. 
We then show that how current samples, which approximate 
the intensity function and the cardinality distribution, can 
be drawn based on the set of auxiliary variables involving 
measurement indices and existing particles. We build the 
proposal distributions of the auxiliary variables by means of 
potential functions. Furthermore, we show that the elementary 
symmetric functions, which are the basic components of 
the CPHD filter, can be derived in terms of these potential 
functions. So, we apply UT in two steps to approximate 
these potential functions for both constructing the proposal 
distribution and computing importance weights. Although our 
suggested filter is expected to be computationally intensive, it 
would be worth using this method because, as we will show, 
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this filter outperforms its counterparts both in cardinality 
estimation and localization accuracy, even in harsh situations 
such as in scenarios with high clutter.
The structure of this paper is as follows. The CPHD 
recursion is introduced in Section II. The implementation of 
the CPHD filter based on the idea of the auxiliary particle 
filter is described in Section III. The application of UT for 
construction of the proposal distributions is discussed in 
Section IV. In Section V, through a simulation scenario of 
MTT with various clutter levels, the performance of our 
proposed algorithm is evaluated in terms of different metrics 
and compared with counterpart algorithms. Closing remarks 
are given in Section VI.

2- Cardinalized Phd Filter
According to finite set statistics (FISST) framework, which is 
the appropriate formulation of the point process theory [20] in 
MTT application, the multi-target state is represented as a finite 
set X={x1,..., xn} with target state-vectors x1,..., xn and random 
target number n. So the state X is a random finite set     . 
Mahler [4], analogous to constant-gain Kalman filter, developed 
a first-order statistical moment of the full multi-target probability 
density which is named the probability hypothesis density (PHD)

where dw(x) denotes the Dirac delta function concentrated at w.
The PHD filter serves as a powerful technique for decluttering. 
However, [21] argues that estimating the number of targets, the 
merit obtained by using the PHD filter, is subject to a large 
variance due to propagation of only the first-order statistical 
moment of the full target posterior distribution.
To that end, [5] proposed cardinalized PHD (CPHD), which 
propagates not only PHD but also the whole probability 
distribution on the number of targets. The prediction and 
correction steps of the CPHD filter are given by the following 
section.
A. CPHD Prediction
The intensity function Dkk(xk) is forwarded in time by retaining 
survived targets (persistent targets) as well as adding newly 
born targets

where we extend the state space E of the survived target 
with dimension d, E⊂Rd by an isolated ‘source’ point S, 
representing a state space of newly born target, so that we may 
denote by E` the extended space E∪{S}. Individual targets 
evolve independently according to the extended single-state 
Markov transition density

where b(x) is the birth intensity function, which in this paper 
follows the Gaussian distribution defined as
where gb is the predicted number of newly born targets at 
each time-step and mb is the state vector of a newly born 
target most likely to appear in the observation area, and Qb 
is the uncertainty covariance matrix.1  Furthermore, b[h] is 
the corresponding linear functional of the function h(x) and 
defined as

1 We can also apply a Gaussian mixture for b(x) , when the initial 
position of a newly born target is a multimodal distribution.

Consider a target with the x and y positions [xk,yk], corresponding 
velocities [vx,k,vy,k] and the turn rate wk. We assume that the 
target trajectories are modeled by nonlinear nearly-constant 
turn model [22] to represent f(xk+1|xk). That model describes 
the evolution of the target state xk=[xk,vx,k,yk,vy,k,wk]` as

where the process noise ek has a multivariate normal 
distribution defined as                     with
and T is the sampling time. As a result, we may write 

The extended probability of survival for a target with state xk 
at time-step k is given by

where ps(xk) is the survival probability of the persistent target 
with state xk. We also denote by	          the extended intensity 
function defined as

The prediction cardinality distribution is given by

where pB(n) is the cardinality distribution of newly born targets, 
G(x)=Gk|k(x) is the probability generating function (PGF) of the 
cardinality distribution of fk|k(X|Z(k)),
where                                    , and
Note that G(i)(x) is the  derivative of G(x).
B. CPHD Correction
At time-step k+1 we receive measurements which comprise 
a finite set Zk+1={z1,...,zm}. Those measurements belonging to 
the true targets are generated based on the range and bearing 
measurement model

where vr and vq are zero mean Gaussian measurement noises 
of variance s2

r and s2
q respectively. Furthermore, we adopt 

the notation Z(k+1)=Z1,...,Zk+1. The measurements which do not 
belong to true targets are false alarm events which we assume 
that they are Poisson processes with spatial distribution c(z) 
and average number of clutter points l.
Each target is detected with the probability of detection pD(x). 
The correction step of the CPHD filter is given by
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where we denote

where Lzp(x)=f(zp|x) is the measurement likelihood function. 
We denote qD(x)=1−pD(x). In addition, we define the function 
             as

where pk(n) is the cardinality distribution of false alarms, 
p(n)=pk+1|k(n) is the predicted cardinality distribution at time-
step k+1, Pk

n is the k-permutations of n, and si(Z) is given by

where the elementary symmetric function sm,i(y1,...,ym) of 
degree i in y1,...,ym is given by

where the degree zero is given by convention as

and we denote by 

We assume that pD(x) is independent of state-vector x for all  
x and we may, therefore, write s[qD]=qD. 
Consequently, the cardinality distribution is updated in terms 
of the predicted cardinality distribution as 

3- Auxiliary Particle Filter Implementation
To convey the idea behind our proposed approach, we first 
consider a discrete approximation of the following integral

by using samples generated from a proposal distribution, 
where j is a test function. Instead of forwarding all existing 
particles with an inefficient proposal distribution such as 

fa(xk+1|xk), we may construct an efficient proposal distribution.
We achieve this goal by using auxiliary particle filter 
principle and sampling on a higher dimensional space in the 
hope that it will increase estimation accuracy. The principle 
of the Auxiliary Particle Filter (APF) [23], which is using 
auxiliary random variables may be applied in the target 
tracking contexts in which the number of targets are not 
already known and can be changed during the time. 
The application of the auxiliary random variable can be 
extended for detection and tracking a target within raw 
measurements [24] or multiple target tracking using the PHD 
filter with time varying number of targets [17] .
We explore a situation in which targets are detected by 
probability density                            which are defined on
spaces E×E`×|Zk+1|. In this situation, auxiliary variables 
include existing particles     and indices of current 
measurements p∈{1,...,|Zk+1|}. Consequently, sampling on 
a higher dimensional space is done by first picking up a 
measurement which can be regarded as an observation more 
probably generated from a true target. Secondly, we select an 
existing particle on the basis of how well it describes the picked 
up measurement. We also explore a situation of undetected 
targets by proposal distribution                            defined on 
spaces E×E` by using existing particles        as auxiliary 
variables.  
The fundamental flow of the Auxiliary CPHD (ACPHD) 
algorithm is shown in Fig. 1. Based on the source point 
of a newly born target, existing particles          which are 
approximating Dk|k(xk), and current measurement set Zk+1, N(1) 
three-tuples                                                 are sampled while the super 
script d in               denotes samples belong to detected targets. For 
undetected targets,                   draws N(2) two-tuples
                              where while the super script m in 
denotes samples belong to undetected targets. We take the union 
of these Np=N(1)+N(2) tuples with their corresponding importance 
weights as the discrete approximation of  Dk+1|k+1(xk+1).
We substitute Dk+1|k+1(xk+1) appeared in (17) with its comprising 
terms defined in (2) and (9), and then we use the proposal 
distributions                                                                   in order 
to change the integrand in (17) to

According to the Bayes’ rule, we can decompose the joint 
proposal distributions as
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and

We can also trivially prove that the minimum variance of 
importance weights is direct consequence of the following 
choices of decompositions

where                  and                  are bounded potential functions 
for detected and undetected targets respectively, and defined 
as follows

We apply the potential function                 to enforce   current 
measurement’s fitness on the selection of xk, while                          can 
determine how likely the existing particle xk is to be undetected 
at the time-step k+1 Estimations of these potential functions 
by both UT method (in prediction mode) and drawn samples 
(in update mode) are the key elements of our algorithms. This 
is due to the fact that, as we will show later on in the paper, 

other parameters can be readily computed based on these 
potential functions.
Now suppose that, we have a discrete approximation of the  
CPHD filter at time-step k with a limited number of particles 
and related weights  

and therefore

These approximations become exact when the number of 
particles grows to infinity. Based on the discrete approximation 
in (27), the equations from (21) to (23) are adjusted as

4- Application Of UT To Auxiliary CPHD Filter
In order to build the proposal distributions for sampling 
auxiliary variables, we have to determines integrals (24) and 
(25). However, it is generally impossible because new samples 
xk+1 are not yet available. Here, we can use the unscented 
transform to approximate the values of the potential functions 
based on the existing particles               rather than resorting 
to unknown samples xk+1.
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One of the benefits of applying UT is that its byproducts 
can be used to design Gaussian proposal distributions

For each sample xk
(i) we keep track of a posterior covariance 

matrix Pk
(i), so that we form augmented state vector,        , and 

covariance,        , with zero mean noises ek and xk as

where Q and R are defined in Section II. For the newly born 
target sample                      , we should define an augmented state 
vector and a covariance with different dimensions as follow

where mb and Qb are mean and covariance of the birth intensity 
function and               is a covariance matrix that expresses the 
uncertainty about the mean of the distribution of newly born 
targets, so that sb could be a very small positive value.
We build a matrix        of 2L+1 UT sigma points (vectors) to 
capture statistics of the stochastic process of target motion 
defined via the nonlinear transformation in (4) as

where L is the dimension of the augmented state and
 is a scaling parameter with a secondary 

scaling parameters k and a . Relating UT weights are defined 
according to

where b is a constant. 
Going for the time update, we form the jth   predicted sigma 
point state,                     as

where we denote by c(:,j) the jth column of c and by c(a:b,j) 
the jth column of c where the number of its rows goes from 
a to b. Note that c(5,j) particularly denotes the turn rate of 
c(:,j). The predicted sigma point states of (35) play a key role in 
approximating the potential functions. We denote by   
the predicted estimate of the potential function                                 which 
is computed as

The predicted estimate of potential function for the case of 
undetected targets,                    , can be computed analytically if 
the detection probability is independent of a target state (and 
in this paper we assume the same property for all states). As a 
result, (25) is simplified to the following form

and thus there is no need to apply UT anymore.
Similar to the previous notation for                , we denote 
by                           the predicted estimate of the linear functional 
	           , where we replace                    with   

Now it is possible to construct the proposal distributions for 
sampling auxiliary variables of detected targets

where                           is defined in the same way as U1(Zk+1−{zp}), 
expect that Dk+1|k[pDLzp] is replaced by the predicted estimates

for p=1,...,|Zk+1. The function U1(Zk+1−{zp}) is 
also defined in terms of the bounded potential functions. To see 
that, let’s look at (11) which shows that U1(Zk+1−{zp}) is a function 
of sj(Zk+1−{zp}) for j=1,...,|Zk+1 .p=1,...,|Zk+1 These elementary 
symmetric functions, in turn, need the quantity of Dk+1|k[pDLzp], 
p=1,...,|Zk+1 which are the corresponding linear functional of 
the predicted intensity function, Dk+1|k(xk+1), and defined as

Now let the respective sample-based approximation of  
Dk+1|k(xk+1) be
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then we can trivially approximate Dk+1|k[pDLzp] as follows

where                                                      . We henceforth use 

the terms                         and                        interchangeably 
to avoid the unnecessary diversity of notation for syntactic 
definitions.
Fig. 2 shows the schematic illustration of the fundamental 
components of the proposal distributions
and                       .
As we mentioned earlier, there is no need to apply UT 
anymore for undetected targets. Consequently, the proposal 
distribution for sampling                   is given by

The last step required to obtain detected target three-tuples   
and undetected target two-tuples

   is the construction of two proposal 

distributions                                   and                                 .
First, we concentrate on                                    . Let us consider 

the nth pair of auxiliary variables       and      which are 
selected according to (39), as a part of three-tuple

. Hereafter, we drop the index n for 
notational ease.
The time update for the given pair of auxiliary variables

and pk+1 using unscented transform includes the 
following steps

where, according to (8), the function h(.) is defined as

The equations of the measurement update are as follows
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appropriate existing particle        and a new measurement with index p which is likely to be generated from a true target.
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where zpk+1 is the measurement of the RFS Zk+1 whose index 
is the auxiliary variable pk+1. 
Now, thanks to the by-products of the UT measurement 
update, we have sufficient means at our disposal to design an 
efficient proposal distribution                                 . We can
generate the nth new sample,            , according to the 
following Gaussian distribution:

where         and          are given by  (46).
In the case of undetected targets, the optimal choice for 
sampling                  would be the extended single-state Markov 
transition density1:

The importance weights are computed to correct the discrepancies 
due to the usage of the first-stage weights, as it is necessary for 
the auxiliary particle filter [23]. Note that we should know the 
true values for functions U0(Zk+1), U1(Zk+1−{zp}) (for detected 
targets), and U1(Zk+1) (for undetected targets) in order to 
compute the importance weights. In contrast to the predicted 
estimate,                      , the update estimate of Dk+1|k[pDLzp] which
we will show with                                                can be obtained 
with new drawn samples             instead of the existing 
particles                   as follows

where, if we consider new samples whose three-tuples have 
picked up the pth new measurement, then              is the set of 
the indices of those new samples:

As a result, we can compute the update values (almost true 
values) of the functions U0(Zk+1), U1(Zk+1−{zp}), and U1(Zk+1). 
We replace Dk+1|k[pDLzp] with                       to obtain , 

 ,and                 . The importance weights of 

1 Indeed, discussed later on in this section, we will better understand 
the reason for its optimality after we show that the corresponding 
importance weights become uniform.

the detected targets are computed as

Remark 1: Consider               in (51) so that 
equals the Gaussian density  

  . As it is evident, (G5×3.

Q3×3.G`)5×5 is not a full rank covariance matrix (two out of five 
eigenvalues are zero) and therefore the Gaussian
cannot be evaluated at a given         . Instead of
we may evaluate the below full rank Gaussian density

The importance weights of undetected targets are computed as

If we consider (43), importance weights of undetected targets 
is transformed into the following form:

We can see from (54) that the importance weights of 
undetected targets are uniform. This results in the minimum 
importance weight variance (equal to zero). 
The expected number of targets at the time-step k+1 in the 
observation area is computed by taking summation of  Np  elements 
of the concatenated set                                                               . 
Remark 2: It is not required to perform resampling at the 
end of each cycle of Auxiliary particle filter family. In fact, 
resampling step is done before computing importance weights 
While we are picking up auxiliary variables, we are doing 
resampling.
The process of applying UT to implement ACPHD is illustrated 
in the schematic in Fig. 3.

Simulations
We demonstrate the superiority of the proposed Unscented-
Auxiliary CPHD (U-ACPHD) filter over the SMC-PHD, 
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SMC-CPHD and Unscented-Auxiliary PHD (U-APHD) filter 
by simulation results. The implementation method for the 
SMC-PHD and SMC-CPHD filter are described in [14,15]. 
We follow the same procedure described for the U-ACPHD 
filter in order to implement the U-APHD filter expect that the 
update and correction steps of the U-APHD filter is modified 
according to the PHD recursion [17].
In our simulations, we confine observations to a square 
region with sides equal to 1km while the sensor is located in  
The simulation scenario parameters are denoted in Table 1. 
For the SMC-PHD and SMC-CPHD filter, we set the numbers 
of particles assigned to sample from the intensity function of 
newly born and persistent targets to 500 and 2500 respectively, 
which are fixed regardless of the expected number of targets. 
For the birth intensity function, we set mb=[500,0,500,0,0]` 
and Qb=diag(152,52,152,52,0.12).

There are 5 targets appearing and disappearing during the 
simulation time of 90 time-steps (nearly 100 time-steps), 
so the predicted number of newly born targets b[1]=gb is 
5/100. The spatial distribution c(z) is uniform over range 
and bearing domain [0,1000]×[0,p/2] and average number 
of clutter points l equals 10. We set g and b-a2 to 2 and 0 
respectively in (34).
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Fig. 3. The schematic of how UT can be used to implement ACPHD filter and construct proposal distributions as well as computing 
importance weights.

Parameter Value
T 1 s
se 0.1
sw p/180 rad/s
sq 0.5×p/180 rad
sr 1 m
pD 0.95
ps 0.99

N(1) 2500
N(2) 500

Simulation length 90 time-steps

Table 1. Simulation Scenario Parameters

Fig. 4. Trajectories of true targets emerged in clutters (average 
number of Clutters is 10). The simulation totally includes 90 

time-steps.

Fig. 5. The OSPA distance for different filters versus simulation 
time-step, averaged over 100 Monte Carlo runs. An average 

number of Clutter points is 10. 
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Our scenario of interest, consisting of five targets whose 
trajectories are merged into clutter, is shown in Fig. 4. In addition, 
the related initial states and appearance and disappearance time-
steps of targets used in the simulation scenario are all illustrated 
in Table 2. 
The true number of targets at each time-step can be obtained 
from the target appearance and disappearance times in Table 2.
We computed the OSPA, cardinality, and localization distance 
between the set of target state position estimates and true target 
positions at each time-step in order to compare performance 
of the four aforementioned tracking algorithms (see [25] for 
more details about these distances). Each distance is obtained 
by averaging over 100 Monte Carlo runs. Two parameters of 
the OSPA distance, the OSPA order (r) and the OSPA cut-
off (c) are set to 2 and 150 m respectively. The SMC-PHD, 
SMC-CPHD, U-APHD, and U-ACPHD filter approximates 
intensity function with particle samples and do not explicitly 
provide any state estimate. 
We apply the natural clustering methods for extracting target 
states from the sample-based approximated U-APHD and 
U-ACPHD filter. The method is valid thanks to the principle 
of auxiliary variables and described in [16,17]. 
However, it would not work for the case of the SMC-PHD and 
SMC-CPHD filters and so we apply the k-means clustering 
function in MATLAB, and set its parameters as follows: 
‘distance’=’city’ and ‘replicates’=’5’.
As shown in Fig. 5, the OSPA distance is getting larger when 
we see a growth of the number of targets much like what 
happens for the period started from the time-step 21 up to 
the time-step 70, common for all filters. This is due to using 
fixed number of particles regardless of the expected number 
of targets. As a consequence of this strategy, the number of 
particles assigned to each tracked target decreases and this 
leads to poor estimation performance.
Apart from this fact, as shown in Figs. 5-7, the U-ACPHD 
outperforms in terms of the localization accuracy and the 
cardinality estimation because the U-ACPHD filter uses two 
auxiliary variables to utilize the most current information to 
improve both the cardinality density and intensity function. 
Of the other methods tested, the U-APHD filter offers the 
next best performance, and that is because it applies auxiliary 
variables to only improve the estimation of intensity function. 

We can see that the SMC-PHD filter has the worst results in 
cardinality estimation and localization performance compared 
to other filters. 
Indeed, as pointed out in [5], the value of the expected 
number of target for the SMC-PHD filter is very unstable in 
the presence of misdetection and there is a high probability to 
lose a confirmed track. This justifies its higher OSPA, 
cardinality and localization distances for the last time-steps.  
In order to assess the impact of average number of clutter 
points on estimation of intensity function, we compute the 
OSPA, cardinality, and localization distance over the 100 
Monte Carlo runs, for various values of l. These distances 
are then averaged over the entire period of simulation time 
(90 time-steps). The results are represented in Table 3.
According to the Table 3, the U-ACPHD filter again outperforms 
the rest of filters in terms of all average distances for all tested 
values of  l. Its robustness and accuracy in different environments 
(especially in high-clutter environments) justify the complexity 
involved in the implementation of the U-ACPHD filter. To our 
surprise, the SMC-PHD filter has the second best performance. 
One part of the reason for this behavior is traced to the fact that 
the CPHD filter is more robust than the PHD filter from increase 
in the average clutter rate especially near the origin.
Near the origin, because of the higher incidence of false alarms, 
false tracks can be considered as candidates of targets with very 
low probability of detection. However, the SMC-PHD is not 
good to keep track of targets with low probability of detection 
and seems to be less vulnerable to higher clutter ratings.
The reason for the superiority of the SMC-PHD filter over 
the U-APHD filter in scenarios with high clutter lies with the 
usage of auxiliary variables which improves the localization 
estimation accuracy for true tracks and leads to low 
localization distances. As a result, the APHD filter accounts 
for false tracks and tries to prolong them. The consequences 
of these tendencies are little localization distance versus high 
cardinality distance. The solution to these vulnerabilities is 
to enjoy the benefits of synergy obtained by combination of 
updating cardinality distribution as well as using auxiliary 
variables to estimate the intensity function. This is what 
exactly the U-ACPHD filter is doing, which yields a real 
compromise between cardinality and localization distance in 
harsh environments , as it is evident in Table 3.

Fig. 6. The localization distance averaged over 100 Monte 
Carlo runs. An average number of Clutter points is 10. 

Compared to the auxiliary particle based filters, both the SMC 
filters have failed in performance of localization estimation fo 

time-steps in which all the targets are present.

Fig. 7. The cardinality distance averaged over 100 Monte 
Carlo runs. An average number of Clutter points is 10. Apart 

from the SMC-PHD filter, other filters have nearly similar 
performance.
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The reason for the superiority of the SMC-PHD filter over 
the U-APHD filter in scenarios with high clutter lies with the 
usage of auxiliary variables which improves the localization 
estimation accuracy for true tracks and leads to low localization 
distances. As a result, the APHD filter accounts for false tracks 
and tries to prolong them. The consequences of these tendencies 
are little localization distance versus high cardinality distance. 
The solution to these vulnerabilities is to enjoy the benefits 
of synergy obtained by combination of updating cardinality 
distribution as well as using auxiliary variables to estimate 
the intensity function. This is what exactly the U-ACPHD 
filter is doing, which yields a real compromise between 
cardinality and localization distance in harsh environments , 
as it is evident in Table 3.
Another comparison metric we are using is the computational 
efficiency of these algorithms. 
If we denote the number of current measurements by |Zk-1| 
and the number of particles by Np, the SMC-PHD and SMC-
CPHD filter have computational complexity
and                                            respectively. The two other 
filters with auxiliary particle implementation clearly demand 
more computation resources since they need to obtain 2L+1 
UT sigma points for every particle. 
To compare the four aforementioned filters in terms of run 
times, we compute mean and standard deviation of CPU run 
times per time-step on a Core i5-3570K Ivy Bridge 3.4GHz, 
where each result is averaged over 100 Monte Carlo runs. 
The results are summarized in Table 4.
We also study the average (out of 100 Monte Carlo runs) 
number of picking the newly born sample S by both the 
U-APHD and U-ACPHD filter. The results are shown in Fig. 8.

For example, at the time of first target appearance, time-step 
5, the N(1)+N(2)+1 th particle, S, is selected nearly 200 times 
by the U-ACPHD filter out of N(1)+N(2)+1 existing particles to 
form N(1) three-tuples                                      .
This shows that the U-ACPHD filter is sensitive to birth 
events. For other time-steps at which there is no birth event, 
the repetition of picking the existing particle S decreases. 
According to Fig. 8, the U-ACPHD filter has better 
sensitivity to birth event than the U-APHD filter thanks 
to more information available by updating the cardinality 
statistics. Furthermore, the U-ACPHD filter usually has less 
repetition of the newly born sample when there is no birth. 
This fact could be verified by Fig. 8 when it shows that the 
U-ACPHD filter contains more discontinuous points, which 
are indicative that the particle S is not selected at those points.

5- Conclusion
In this paper, we have derived an auxiliary particle 
implementation of the CPHD filter based on the UT algorithm. 
Our proposed algorithm exploits the UT algorithm to construct 
the proposal distributions required to draw a set of auxiliary 
variables containing measurement indices and existing particles. 
This works to boost the performance in approximating intensity 
function just like how auxiliary particle filter samples on a higher 
dimensional space and achieves more accurate estimation than 
those achieved with Sampling-importance resampling (SIR) 
scheme, which is called SMC-CPHD implementation method 
in the literature. 
We have overcome the difficulty of using auxiliary particle for 
implementation of the highly complex CPHD filter recursion 
with defining potential functions which help with approximation 
of the elementary symmetric functions. To that end, we have 
discussed in detail how to apply UT to compute these potential 
functions before and after generating current samples. 
We have compared our proposed algorithms against the SMC-
PHD, the SMC-CPHD, and the U-APHD filter based on 
different metrics such as cardinality and localization distance, 
algorithm run times, and sensitivity to new target appearance. 
As it is evident in Table 3, numerical results have shown our 

TARGET 
NUMBER

INITIAL STATE
(M,M/S,RAD/S)

APPEARANCE 
TIME

(TIME-STEP)

DISAPPEARANCE 
TIME

(TIME-STEP)

1 [505,-5,490,-5,0]` 1 70

2 [485,5,525,-5,0]` 5 74

3 [505,5,505,-5,0]` 11 80

4 [495,5,490,5,0]` 15 84

5 [500,-5,510,5,0]` 21 90 (END)

Table 2. Targets’ Initial States And Their Appearance And 
Disappearance Time-Steps

Table 3. The average OSPA performance of different filters for 
various values of the average number of clutter points l. 

Fig. 8. Repetition of the N(1)+N(2)+1 th particle, S, as the 
selected existing particle, averaged over 100 Monte Carlo 

runs. Blue lines indicate time-steps at which birth occurs. Any 
discontinuity demonstrates that there is no selection of the 

particle, S, out of N(1) selected existing particles.

l=10 SMC-PHD 
FILTER

SMC-CPHD 
FILTER

U-APHD 
FILTER

U-ACPHD 
FILTER

OSPA DIS.
LOC. DIS.
CAR. DIS.

42.4468
14.9869
30.5740

38.3107
13.5236
27.5587

35.8004
8.8654
29.2819

32.7478
8.2779
26.3616

l=30 SMC-PHD 
FILTER

SMC-CPHD 
FILTER

U-APHD 
FILTER

U-ACPHD 
FILTER

OSPA DIS.
LOC.DIS.
CAR. DIS.

51.2200
17.3767
38.7589

54.7985
19.0280
41.1676

64.5026
11.5215
58.1376

46.6291
13.2210
36.6109

l=50 SMC-PHD 
FILTER

SMC-CPHD 
FILTER

U-APHD 
FILTER

U-ACPHD 
FILTER

OSPA DIS.
LOC. DIS.
CAR. DIS.

63.7661
21.985
49.3045

65.9517
24.3297
49.6968

87.8809
10.5030
84.0311

61.3166
22.3662
44.4617
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proposed algorithm superiority over its counterparts especially 
in scenarios with high clutter, although the U-ACPHD filter 
takes up more computation time because of the UT steps and 
more complex recursion. 
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