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In this paper, robust PID control of fully-constrained cable driven parallel manipulators with elastic 
cables is studied in detail. In dynamic analysis, it is assumed that the dominant dynamics of cable can 
be approximated by linear axial spring. To develop the idea of control for cable robots with elastic ca-
bles, a robust PID control for cable-driven robots with ideal rigid cables is firstly designed and then this 
controller is modified for the robots with elastic cables. To overcome vibrations caused by the inevitable 
elasticity of cables, a composite control law is proposed based on singular perturbation theory. This pro-
posed control algorithm includes robust PID control for the corresponding rigid model and a corrective 
term to damp the vibrations due to cables flexibility. Using the proposed control algorithm, the dynam-
ics of the cable-driven robot is divided into slow and fast subsystems and then, based on the results of 
singular perturbation theory, stability analysis of the total system is performed. Finally, the effectiveness 
of the proposed control law is investigated through several simulations on a planar cable-driven robot.
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1- Iintroduction
Conventional robots with serial or parallel 

structures have some limitations to be used in large 
workspace applications. General serial and parallel 
robots use rigid links and elements in their structures 
and this leads to a small workspace and hence they 
are not suitable for long-reach robotics applications. 
To overcome this problem, a new trend was formed 
in design and implementation of the robots three 
decades ago. This trend is based on using cables 
instead of rigid links in parallel manipulators. A 
Cable-Driven Parallel Manipulator (CDPM) consists 
of an end-effector and a number of active cables 
connected to the end-effector. These cables are fixed 
on the base with actuating motors and pulleys. While 
the cables lengths are changing, the end-effector is 
forced toward the desired position and orientation. 
Replacing rigid links by cables inaugurates many 
potential applications, such as very large workspace 
robots [1], high-speed manipulation [2], handling of 
heavy materials [3], cleanup of disaster areas [4], 
access to remote locations, and interaction with the 
hazardous environment [5].

CDPMs can be classified into two types, fully-
constrained and under-constrained [4-7]. In the fully- 
constrained type, cables can create any wrench by 
pulling on the end-effector [8] or equivalently, for a 
given set of cable lengths, the end-effector can not 
be moved in position and orientation [4,9]. To fully 
constrain a CDPM, the number of cables driving 
the end-effector must be at least one greater than 
the number of robot degrees of freedom. According 
to aforementioned facts, a wrench-closure pose of a 
CDPM is a pose at which the end-effector is fully-
constrained by the cables. Based on this definition, 
the wrench-closure workspace of a CDPM can be 
defined as the set of wrench-closure poses [10]. 
The wrench-closure workspace only depends on the 
geometry of the mechanism [6]. The cable robots to 
be discussed in this paper are of a fully-constrained 
type and it is assumed that the motion control is in the 
wrench-closure workspace.

Using cables instead of rigid links, however, 
introduces new challenges in the study of CDPMs. 
Cables can only pull and not push, while general 
parallel robots have actuators that can provide bi-
directional tension. Therefore, in this type of robots, 
the cables must be in tension in the whole workspace 
of the robot and as soon as the cables become 
slack, the structure of the cable robot collapses. The 

nonlinear dynamic behavior of the cables is another 
major challenge in mechanical and control design 
of this class of robots. Cables are usually elastic 
elements and have to encounter some unavoidable 
situations, such as elongation and vibration. Cables 
elasticity may cause position and orientation errors. 
Moreover, the system may lead to vibration, and cause 
the whole system to be uncontrollable. In applications 
which require high bandwidth or high stiffness of the 
system, vibration may be a serious concern [11]. In 
terms of control, proposed control algorithms for this 
class of robot must be designed such that they can 
damp vibrations and guarantee that the cables remain 
in tension.

Control of CDPMs has received limited attention 
compared to that of conventional robots. With the 
assumption of a massless and inextensible model 
for the cable, most of the common control strategies 
for conventional robots have been adapted for cable 
robots. Lyapunov-based control [2,12], computed 
torque method [13], sliding mode [14], robust PID 
control [15] and adaptive control [16,17] are some 
control schemes being used in the control of cable 
robots. The inclusion of cable dynamic characteristics 
in the model of the cable robot leads to a complication 
in the control algorithm, and research on this topic 
is very limited. By using elastic and massless model 
for the cables, authors derived a new model for the 
cable robot and proposed a new control algorithm 
[18]. This control algorithm is formed in cable length 
space and uses internal force concept and a damping 
term. The stability of the closed-loop system is 
analyzed through Lyapunov theory and vector closure 
conditions. In [19] the dynamic model of the robot 
is used in proposed composite controller which is 
formed in task space. This algorithm benefits internal 
force concept and a corrective term to compensate 
the effects of cables elasticity. However, due to its 
dependency to a dynamic model of the robot, this 
control algorithm is not robust against modeling 
uncertainties.

The main goal of this paper is to present a new 
approach in the control of CDPMs with elastic 
cables by using popular PID controller and singular 
perturbation theory [20]. Singular perturbations cause 
a multi-time scale behavior of dynamic systems 
characterized by a presence of both slow and fast 
transients in the response of the system [20]. Thus, 
dynamics of the system can be divided into two 
subsystems; slow and fast. These subsystems can be 
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used in the design of efficient control algorithms. In 
this paper, first dynamics of cable robot with ideal 
rigid cables is introduced in section (2) and the robust 
PID control algorithm is proposed for this model. 
Then, UUB stability of the rigid system with proposed 
controller is analyzed through Lyapunov theory. Next 
in section (3), a dynamic model is extended for elastic 
cables, and a control strategy is developed using 
singular perturbation theory. By using Tikhonov’s 
theorem, slow and fast variables are separated and 
incorporated in the stability analysis of the total 
closed-loop system. Finally, simulation results on 
a planar cable robot are given to demonstrate the 
effectiveness of the proposed control algorithm in 
practice.

2- Robust PID control of rigid cable robot
In this section, we assume that the elasticity of 

cables can be ignored and cables behave as massless 
rigid strings. Based on this assumption, the standard 
model for the dynamics of n-cable parallel robot is 
given as [15]:

(1)
in which:

where x∈R6 is the vector of generalized coordinates, 
M(x) is the inertia matrix, Im is the diagonal matrix 
of actuator inertias reflected to the cable side of the 
gears, C(x,ẋ) represents the Coriolis and centrifugal 
terms, G(x) is the gravitational terms, r is the radius 
of pulleys and ur represents the input torque. J 
represents the Jacobian matrix of the system and 
relates ẋ to derivative of the cable length vector by: 
L̇=Jẋ. Furthermore, Fd denotes the coefficient matrix 
of viscous friction, Fs is Coulomb friction term and 
Td denotes disturbances which could represent any 
inaccuracy in a dynamic model. Although these 
equations are nonlinear and complex, they have 
some properties which are beneficial in the controller 
design [19].

Property 1: Inertia matrix Meq(x) is symmetric 
and positive definite.

Property 2: Matrix Ṁeq(x)‑2Ceq(x,ẋ) is skew- 

symmetric.
In the design of robust PID controller, it is assumed 

that all dynamical terms, such as Meq(x) and Ceq(x,ẋ) 
are uncertain and only some information about their 
bounds is available. As it is demonstrated in [15], in 
spite of uncertainties in all parameters, the following 
relations hold for dynamic terms of the cable robot.

(2)

in which, e=xd‑x and y=[∫0

t
eT(s)dseTėT]T. The 

control law is designed based on these bounds and 
assumptions to satisfy robust stability conditions. 
Recall dynamic model of system (1), and choose a 
PID controller for the system as follows:

(3)

or

(4)

J† is pseudo-inverse of JT, which achieves a 
minimum norm response, and Q which is called the 
internal forces, spans null space of JT and must satisfy

(5)
It is important to note that the vector Q does 

not contribute to the motion of the end-effector and 
only causes internal forces in the cables. This term 
ensures that all cables remain in tension in the whole 
workspace. In this paper, it is assumed that the motion 
is always within the wrench-closure workspace and, 
as a consequence, at all times, positive internal 
forces can be produced such that the cables remain 
in tension.

2- 1- Stability analysis
Implement the control law ur in (1) to get:

(6)
where,

To analyze the robust stability of the system, 
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consider the following Lyapunov function.

in which,

Now for simplicity choose, KP=kpI, KV=kVI and 
KI=kII. Then we may prove the following results.

Lemma 1: Assume the following inequalities 
hold:

Then P is positive definite and satisfies the 
following condition:

(7)
in which,

and

m̲ and m̅ are defined as before in (2).
The proof is based on Gershgorin theorem and 

is similar to that in [21]. Now, since P is positive 
definite, by using skew-symmetry of Ṁeq‑2Ceq and 
some manipulations, one may write

where,

Hence, we have

in which,

Using inequalities (2), one may write V̇R(y) as
(8)

in which,

(9)

where λ1=λmax(R1), λ2=λmax(R2) and λ3=λmax(R3), and λmax 
denotes the largest eigenvalue of the corresponding 
matrix, and

According to the result obtained so far, we may 
state the stability conditions for the error system 
based on the following theorem.

Theorem 2.1: The error system (6) is uniformly 
ultimately bounded (UUB), if ξ1 is chosen large 
enough.

Proof: According to Eqs. (7) and (8) and lemma 
3.5 from [22], if the following conditions hold, the 
system is UUB stable with respect to B(0,d), where

The conditions are:

These conditions can be simply met by choosing 
large enough ξ1. According to (9), this can be met by 
choosing appropriate large control gains KP, KV and 
KI.
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3- Robot with elastic cables
3- 1- Dynamic model

In a CDPM vibration caused by inevitable 
elasticity in cables may be a major concern for some 
applications which require high accuracy or high 
bandwidth. New research results have shown that in 
fully-constrained cable robots, dominant dynamics 
of cables  correspond to longitudinal vibrations 
[11,19,23] and therefore, axial spring model can 
suitably describe the effects of dominant dynamics of 
cable.

In order to model a general cable-driven robot 
with n cables assume that: L1i:i=1,2,...,n denotes 
the length of i-th cable with tension which can be 
measured by a string pot. L2i:i=1,2,...,n denotes the 
cable length corresponding to the i-th actuator and 
may be measured by the motor shaft encoder. If the 
system is rigid, then L1i= L2i, ∀i. Let us denote:

L=(L11,L12,...,L1n,L21,L22,...,L2n)=(L1
T,L2

T)T

With this notation, the final equations of motion 
are derived in [19], which may be written as follows:

(10)

(11)
in which,

In these equations, L0 denotes the initial cables 
length vector at x=0, q is the motor shaft position 
vector, and other parameters are defined as before. For 
the notational simplicity, we assumed that all cable 
stiffness coefficients are equal1. Furthermore, assume 
that the stiffness values of the cables are in order 
of magnitude larger than other system parameters. 
To idealize this assumption, assume that K=O(1/ε2) 
where ε is a small parameter.

Eqs. (10) and (11) represent CDPM as a nonlinear 
and coupled system. This representation includes both 
rigid and flexible subsystems and their interactions. It 
can be shown that the model of cable driven parallel 
robot with elastic cables is reduced to (1), if the cable 
stiffness K tends to infinity. Furthermore, this model 
has inherited the properties of rigid dynamics (1), 
such as the positive definiteness of inertia matrix and 
skew symmetricity of Ṁeq‑2Ceq.

1 This assumption does not reduce the generality of the problem, 
and for the general case this can be easily reached by variable 
scaling.

3- 2- Control
In this section, we will show that the control law 

(4) developed for a rigid robot can be modified for the 
robot with elastic cables. First, consider a composite 
control law by adding a corrective term to the control 
law (4) in the form of

(12)
where ur is given by (4) in terms of , x and Kd is a 
constant and positive diagonal matrix whose diagonal 
elements are in order of O(1/ε). Notice that:

(13)
Substitute control law (12) in (11) and define 

variable z as
(14)

The closed loop dynamics reduces to
(15)

By the assumption on K and our choice for Kd we 
may write

(16)

where K1 and K2 are of O(1). Therefore (15) can be 
written as

(17)
Now Eqs. (10) and (17) can be written together 

as:
(18)

(19)
The variable z and its time derivative ż may be 

considered as the fast variables while the end-effector 
position variable x or L1 and its time derivative ẋ are 
considered as the slow variables. Using the results of 
singular perturbation theory, the elastic system (18) 
and (19) can be approximated by the quasi–steady 
state system or slow subsystem and the boundary 
layer system or fast subsystem [20]. With ε=0, 
equation (19) becomes

(20)
in which, the overbar variables represent the values of 
variables when ε=0. Substitute (20) into (18)

(21)
Substitute L̈̅1=Jx̅+J̇ẋ̅ in above equation:

or
(22)

Eq. (22) is called quasi-steady state system. Note 
that (22) is the rigid model (1) in terms of x̅. Using 
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Tikhonov’s theorem [20], for t>0 the elastic force z(t) 
and the end-effector position x(t) satisfy

where τ=t/ε is the fast time scale and η is the fast state 
variable that satisfies the following boundary layer 
equation,

(23)

Considering these results, elastic system (18) and 
(19) can be approximated up to O(ε) as

According to (20)

(24)

(25)

Notice that the controller gain Kd can be suitably 
chosen such that the boundary layer system (23) 
becomes asymptotically stable. By this means, 
with sufficiently small values of ε, the response of 
the elastic system (10) and (11) with the composite 
control (12) consisting of the rigid control ur given 
by (4) and the corrective term Kd(L̇1‑L̇2) will be 
nearly the same as the response of rigid system (1) 
with the rigid control ur alone. This will happen after 
some initially damped transient oscillation of the fast 
variables η(t/ε).

3- 3- Stability analysis of total system
Control of rigid model and its stability analysis 

were discussed in the previous section. Furthermore, 
it is demonstrated that the boundary layer or the 
fast subsystem (23) is asymptotically stable if the 
corrective term is used in the control law. However, 
in general, the individual stability of the boundary 
layer and that of quasi-steady state subsystems does 
not guarantee the stability of the total closed-loop 
system. In this section, the stability of the total system 
is analyzed in detail. Recall the dynamic equations 
of elastic system (24) and (25), and apply the 
control law (4) from the previous section. Consider 
y=[∫0

teTds eT ėT]‍T and h=[ηT η̇T]‍T, in which e=xd‑x. 
Then the dynamics equations can be rewritten as,

(26)

(27)
in which,

and

The stability of this system may be analyzed by 
the following Lemma and Theorem.

Lemma 3.2: There is a positive definite 
matrix Kd such that the closed-loop system (27) is 
asymptotically stable.

Proof: Consider the following Lyapunov function 
candidate:

(28)

According to Shur complement, in order to have 
positive definite W, it is sufficient to have Kd>Im. 
Differentiate VF along trajectories of (27):

(29)

Since, K, Kd and Im are diagonal positive definite 
matrices, V̇F becomes negative definite if Kd>Im. If 
this condition holds, the closed-loop system (27) is 
asymptotically stable.

Theorem 3.3: The closed-loop system (26) and 
(27) is UUB stable if ξ1 and Kd are chosen suitably 
large.

Proof: Consider the following composite 
Lyapunov function candidate

(30)
in which, yTPy denotes the Lyapunov function 
candidate for the rigid subsystem and hTWh denotes 
that for the fast subsystem (23). According to 
Rayleigh-Ritz inequality:

in which λ̲ and λ ̅ are the smallest and largest 
eigenvalues of the matrices, respectively. By adding 
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these inequalities, one can write,

(31)

Define 







h
y

Z =t  and apply Rayleigh-Ritz 
inequality, it can be written as:

(32)
in which,

Differentiate V(y,h) along trajectories of (26) and 
(27). Hence,

Using Rayleigh-Ritz inequality,
(33)

According to (8), it can be concluded that,

Furthermore,

in which, λmin and σmax denote the smallest eigenvalue 
and largest singular value of the corresponding 
matrices, respectively. By using the above inequalities, 
one may write

(34)
in which,

(35)

R is the positive definite if

(36)

This condition is met by a suitable choice of Kd 
for the fast subsystem. Therefore, one can write,

(37)
Now, according to (37) and (32), and Lemma 3.5 

of [22], if these conditions are met, then the closed-
loop system (26) and (27) is UUB stable with respect 
to Y(0,d׳) where:

and the stability conditions are:

These conditions are satisfied by increasing 
λmin(R), through appropriate choice of large ξ1, and 
λmin(S). Note that, ξ1 is a function of the robust PID 
control gains KI, KP and KV and λmin(S) is affected by 
the control gain Kd for the fast subsystem. Therefore, 
the robust stability of the closed-loop system is 
guaranteed by suitable choice of the controller gains 
such that the above conditions are met.

4- Simulations
To show the effectiveness of the proposed control 

algorithm, a simulation study has been performed on a 
planar cable robot. Our model of a planar cable robot 
[24], consists of a moving platform that is connected 
by four cables to the base platform, as shown in Fig. 
(1). In this figure, Ai denote the fixed base points 
of the cables, and Bi denote points of connection 
of the cables on the moving platform. The position 
of the center of the mass of the moving platform P 
is denoted by P=[xP,yP], and the orientation of the 
moving platform is denoted by φ with respect to the 
fixed coordinate frame. Hence, the manipulator poses 
three degrees of freedom x=[xP,yP,φ], with one degree 
of actuator redundancy.

The equations of motion can be written in the 
following form,

in which, x=[xP,yP,φ], and

Fig. 1. The schematics of planar cable mechanism
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The following parametric values in SI units 
are used in the simulations; Im=0.6I4×4, r=0.035, 
K=1000I, m=2.5 and Iz=0.1. In order to demonstrate 
a highly flexible system, K is intentionally chosen 
very low. To show the effectiveness of the proposed 
composite control algorithm, suppose that the system 
is at the origin and has to track the following smooth 
reference trajectories in x, y and φ coordinates,

(38)

The controller is based on (12) and consists of 
rigid control ur given by (4) and the corrective term. 
Controller gain matrices are chosen as KP=250I3×3, 
KV=40I3×3, KI=20I3×3 and Kd=350I4×4 to satisfy the 
stability conditions. In the first step, only rigid control 
law ur is applied to the manipulator. As is illustrated 
in Fig. (2), the manipulator experiences instability if 
the rigid control ur is solely applied to the system. 
The main reason for instability is the divergence of 

Fig. 2. The closed-loop system experiences instability if only rigid controller ur is applied

its fast variables.
Fig. (3) illustrates dynamic behavior of the closed-

loop system with the proposed control algorithm. 
Internal forces Q are used whenever, at least, one 
cable becomes slack (or L1i<L2i,i=1,...,4), in order to 
ensure that the cables remain in tension. Although 
the system is very flexible, the proposed control 
algorithm can suitably stabilize the system. As it is 
seen in this figure, position and orientation outputs 
track the desired values pretty well, and the steady 
state errors are very small, while as it is shown in Fig. 
(4), all cables are in tension for the whole maneuver.

To investigate the robustness of the proposed 
controller, another simulation with a maximum mass 
of the end-effector m=3 kg and Td=0.1G is performed. 
As it is shown in Fig. (5), in spite of uncertainties 
in the dynamics of the manipulator, the desired 
trajectories (38) are suitably tracked and the steady 
state errors can be ignored. Moreover, according to 
Fig. (6), all cables remain in tension.

To compare resulting performance of the proposed 
control algorithm with traditional (rigid) one, a 
more realistic case with K=1000I4×4 is considered 
for simulation. In this test, suppose that the home 
position for the end-effector is zero and the desired 
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Fig. 3: Suitable tracking performance of the closed-loop system to smooth reference trajectories; Proposed control 
algorithm

Fig. 4. Simulation results showing the cables tension for smooth reference trajectories
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Fig. 5. Suitable tracking performance of the closed-loop system for the model with uncertainties

Fig. 6. Simulation results showing the cables tension for the model with uncertainties



M. A. Khosravi, H. D. Taghirad

123AIJ - Electrical & Electronics Engineering, Vol. 48, No. 2, Fall 2016

end-effector position and orientation are

As it is illustrated in Fig. (7), the closed-loop 
system becomes stable but there exist vibrations in 
the output, provided that only the corresponding 
rigid control effort ur is applied to the system. 
These vibrations limit the absolute accuracy and 
the bandwidth of the mechanism which are very 
important in many applications such as high-speed 
manipulation. However, as illustrated in Fig. (8) the 
system becomes stable and the desired trajectories 
are well tracked, implementing the proposed control 
algorithm on the system.

5- Conclusions
In this paper, a robust PID control of CDPMs with 

elastic cables is examined in detail. Initially, Robust 
PID control of CDPMs with ideal cables is studied and 
it is proved that the proposed controller stabilize the 
system in the presence of dynamic uncertainties. Then, 
by using singular perturbation theory, this algorithm 
is modified to be applicable in the case of CDPMs 

with elastic cables. The proposed composite control 
algorithm consists of a robust PID control according 
to the corresponding rigid model and a corrective 
term to stabilize the fast subsystem. The stability of 
the closed-loop system is analyzed through Lyapunov 
second method, and it is shown that the proposed 
composite controller is capable of stabilizing the 
system in the presence of flexible cables. Finally, the 
performance of the proposed composite controller is 
examined through simulations.
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