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Against the range-dependent accuracy of the tracking radar measurements including range, elevation 
and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of 
the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of 
residual-based adaptive estimation and adaptive fading Kalman filter, and tunes dynamically the filter 
parameters, including the fading factors and the measurement and process noises scaling factors based 
on the ratio of the actual residual covariance to the theoretical one. In fact, due to the unknown and fast-
varying statistical parameters of the radar measurement noises and their nonlinear characteristics, apply-
ing a conventional Kalman filter to INS/Radar fusion yields a low-performance navigation and in-flight 
alignment. The Monte Carlo simulation results of the integrated navigation system on an interceptor 
missile trajectory indicate the new algorithm has an effective performance in the face of nonlinearities 
and uncertainties of the tracking radar measurements. These results allow knowing whether the fine in-
flight alignment and high-performance navigation can be possible for the long-range air defense missile 
using the low-cost INS/Radar system without aiding global navigation satellite system signals. 
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1- Introduction
It is widely accepted that the modern long-range 

air defense missiles will require a two-phase guidance 
strategy employing a mid-course phase followed by 
terminal homing. These tactical missiles will require 
an on-board strapdown inertial navigation system, 
INS, to perform the functions, such as the provision 
of the data for a navigation of the missile prior to 
a period of terminal homing, provision of homing 
head pointing commands and provision of autopilot 
feedback signals [1].

Due to INS intrinsic defect and special mission of 
an anti-air missile, four problems can appear. First, INS 
navigation errors propagate as a result of instrument 
errors, initial alignment error, and imperfections in 
the strapdown computing algorithms. Second, many 
air defense missiles require an accurate alignment of 
the onboard INS in order to achieve a high probability 
of killing against their intended targets [2]. Third, air 
defense systems require rapid reaction time, thus  
significant pre-launch delays for alignment are not 
tolerable [2]. Fourth, typically, such tactical systems 
require medium grade inertial quality instruments 
(high cost) to carry out their functions and to ensure 
an accurate transition to the terminal phase of flight.

As a solution to overcoming these problems, the 
tracking radar (radio detection and ranging) aided INS 
was presented in [1,3]. In this particular application, 
the launch platform can provide only a very coarse 
initialization for the missile’s INS then the missile is 
fired to intercept an intended target. The missile and 
the target are tracked by a ground-based radar system. 
The radar provides measurements of missile range, 
elevation and bearing with respect to the radar set. 
These measurements may be passed to the missile 
via an uplink transmitter and used to aid the on-board 
INS. The missile on-board inertial navigation system 
implements a Kalman filter to determine in-flight 
corrections to the navigation errors.

Several studies have been conducted on INS/
Radar to gain the benefits of in-flight alignment of 
INS, in-flight calibration of INS, improvement of INS 
performance and in-flight registration of radar frame 
with navigation frame.

Both the in-flight alignment by INS/Radar 
integration and the pre-launched alignment by 
shipboard measurements for a ship launched missile’s 
INS are developed and their relative merits are 
compared in [1]. The subject of [2-8] is related to the 
development of a radar and GPS (global positioning 

system) aided INS for a navy tactical ballistic missile 
defense interceptor missile (Standard Missile SM-
3). An overview and a preliminary performance 
assessment of an INS/Radar/GPS system based on 
a direct Kalman filter with 20 states are  provided 
in [3]. The research in [2,4] proposes a new metric 
to determine the degree of observability of attitude 
errors in flight alignment of INS/Radar/GPS over 
specified missile flight profiles. In-flight alignment 
of an onboard INS using the external radar and GPS 
data and a conventional Kalman filter for data fusion 
have  been explained in detail in [5,6]. Sure enough, 
a cornerstone to the in-flight alignment was laid out 
in [7-9] which addressed the question: what  kind 
of horizontal maneuver is preferable in the in-flight 
INS alignment; the interested reader is directed to 
these references for a more detailed discussion of 
in-flight alignment. The references [10,11] discuss 
the successful flight test results of the INS/Radar/
GPS system for the missile SM-3. A strapdown INS 
augmentation scheme comprising astronavigation 
system and secure radio positioning system is 
proposed in [12]. Also, the issue of the Mars entry 
navigation using integration of information sensed 
from radio beacons and information derived from 
inertial measurement unit is addressed in [13].

All the above-mentioned researches relevant to 
the integration of INS and radar data assume that 
the measurement noise covariance matrix (R) in the 
Kalman filter is fixed. In other words, it is supposed 
that the tracking radar measurements have constant 
standard deviations. However, it is well known that 
the radar measurements accuracies are very range 
depended [14, chapter 11], [15, chapter 4]. Indeed, 
the accuracies of range and angles (elevation and 
bearing) measured by the radar are the functions of 
the range (see section 2 for the details). It means the 
matrix R should be a varying matrix, not a fixed one.

Insufficient a priori information about this 
varying matrix R affects the accuracy of the INS/
Radar integrated system. In fact, insufficiently known 
a priori filter statistics will reduce the precision of 
the estimated filter states or introduce biases to their 
estimates [16]. In addition, wrong a priori information 
will lead to the practical divergence of the filter. For 
example, if R is too small at the beginning of the 
estimation process, the uncertainty tube around the 
true value in a probabilistic sense will tighten and a 
biased solution will result. If R is too large, a filter 
divergence, in the statistical sense could be resulted. 
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Besides, it will result in a longer estimation transition 
for the filter whose total operation time is very short 
(about 1 to 3 minutes for a long-range air defense 
missile flight). These minute points imply that using 
a fixed filter designed by conventional methods 
for an INS/Radar system with the changing radar 
measurements accuracies is a major drawback.

From this point of view, this study proposes that 
the fixed estimation formulation for the INS/Radar 
integrated system has resulted  in a poor estimation 
performance and should be replaced by an adaptive 
estimation filter with a varying measurement noise 
covariance matrix. It can be expected that with 
the adaptive fusion scheme, a better navigation 
performance can be achieved.

The paper is organized as follows. In section II, 
the tracking radar is introduced and the measurement 
errors of a specific tracking radar are analyzed. Section 
III outlines the residual-based adaptive estimation 
/ the adaptive fading Kalman filter hybrid method 
(RAE/AFKF) which is the main contribution of this 
paper. In section IV, the process and measurement 
model for INS/Radar integration system are provided. 
In section V, the performance of RAE/AFKF is 
evaluated in Monte Carlo simulations compared with 
an extended Kalman filter, EKF. Finally, section VI 
provides concluding remarks.

2- An assessment of tracking radar 
measurement errors

A typical tracking radar has a pencil beam to 
receive echoes from a single target and tracks the 
target in angle, range, and/or doppler. Discussion in 
[15, chapter 4] and [17, chapters 8, 9] shows that the 
several major effects on the accuracy of the tracking 
radar measurements are as follows:

• Glint, or angle noise which affects all the 
tracking radars especially at a short range. The error 
due to glint varies inversely with the range.

• Receiver noise which also affects all the radar 
types, and mainly determines to track  accuracy at the 
long range. The receiver noise causes the error to vary 
as the square of the range.

• Amplitude fluctuations of the target echo that 
bother the conical-scan and sequential lobing type of 
radars, but not the monopulse type. The amplitude 
fluctuations effect is independent of the range.

• Clutter and multipath effects;
• Servo noise and servo lag of tracking 

mechanism; the servo noise is independent of the 

range.
The contribution of glint, receiver noise and 

amplitude fluctuations to the accuracy of a tracking 
radar as a function of range is illustrated in Fig. 1.

Fig. 1 is a very qualitative plot showing the 
general nature of each of these factors, while precise 
investigations of tracking errors associated with a 
particular monopulse phased-array radar system 
and with the radar AN/FPS-16 are discussed and 
presented in [18] and [14, page 11-12], [19, pages 
48-94], respectively. But the specific operating 
conditions assumed in [14,18,19], such as the 
target radar cross section, RCS, and altitude are not 
compatible with what this research needs. Thus,  
based on the free-space performance analysis and the 
missile target RCS, standard deviation (STD) of the 
total angle and range errors of the tracking radar An/
FPS-16 as a function of range are roughly estimated 
as illustrated in Figs. 2 and 3 (see appendix A for the 
radar equations). Although this radar is one of the 
early monopulse radars, it remains in a wide use and 
represents one of the most accurate tracking devices 
employed in the test-range instrumentation. Its major 
parameters are listed in [17, pages 542-543].

3- INS/Radar adaptive integration system
As mentioned in section I, due to the unknown 

range-varying statistical parameters of the radar 
measurement noises, applying the EKF to INS/Radar 
integration results in a low-performance estimation. 
In order to enhance its performance, this unknown 
and variable statistical parameter needs to be 
estimated and adapted with the system state and the 
error covariance. Two popular types of the adaptive 
Kalman filter algorithms include the innovation-
based adaptive estimation, IAE, approach and the 

Fig. 1. Qualitative plot showing relative contributions 
to the angle tracking error without units [15, page 235]
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Fig. 3. A rough estimation of the tracking range error 
STD for the AN/FPS-16 in free-space analysis

Fig. 2. A rough estimation of the tracking angle error 
STD for the AN/FPS-16 in the free-space analysis

adaptive fading Kalman filter, AFKF, approach [20]. 
The innovation sequences in IAE method have been 
utilized by the correlation and covariance-matching 
techniques to estimate the noise covariance. The 
basic idea behind the covariance-matching approach 
is to make the actual value of the covariance of the 
innovation consistent with its theoretical value. The 
implementation of IAE-based adaptive Kalman filter, 
IAKF, to navigation designs has been widely explored 
in [16,21]. The idea of AFKF is to incorporate 
suboptimal fading factors as a multiplier into the 
predicted covariance matrix to deliberately increase 
the variance of the predicted state vector to  enhance  
the influence of innovation information and improve  
the tracking capability in high dynamic maneuvering 
[22].

In this study, the methods IAKF, AFKF and 

the hybrid approach IAE/AFKF developed in [23] 
were applied to INS/Radar integration problem as 
none of them solely was able to satisfy the desired 
performance. Therefore, a new hybrid approach 
involving the concept of residual-based adaptive 
estimation, RAE, and AFKF is presented. The ratio of 
the actual residual covariance based on the sampled 
sequence to the theoretical residual covariance will 
be employed for dynamically tuning three filter 
parameters, including fading factor (λP), measurement 
noise scaling factor (λR) and process noise scaling 
factor (λQ). To provide these factors, the Kalman 
filter approach is coupled with the adaptive tuning 
system, ATS. In the ATS mechanism, the adaptations 
on the error states covariance matrix (P), on process 
covariance matrix (Q) and on the measurement 
noise covariance are involved. The idea is based on 
the concept that when the filter achieves estimation 
optimality, the actual residual covariance based on 
the sampled sequence and the theoretical residual 
covariance should be equal.

3- 1- Integration algorithm
As shown in Fig. 4, the position states of 

INS, i.e. x, y, z, may be compared with the same 
quantities obtained from a radar model. This model 
converts the radar measurements of  the radar Polar 
coordinate system into the radar Cartesian one 
using x=RcosΘsinΨ, y=RcosΘsinΨ and z=‑RsinΘ 
where R, Θ and Ψ are range, elevation, and bearing, 
respectively.

The differences between the actual and 
predicted measurements are the filter measurements 
innovations. These quantities are multiplied by the 
Kalman gains to provide estimates of the errors in 
the INS indicated position, velocity, and attitude. 
Also, because of insufficient knowledge of the 
radar measurement noise statistics, a residual-based 
adaptive tuning system effectively adapts R, Q and 

Fig. 4. INS/Radar System Block Diagram
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P to compensate such lack of information. Finally, 
the estimates of the errors are subsequently used to 
correct the INS solutions over time, and update takes  
place following the arrival of each radar measurement 
of the missile positions.

3- 2- ARAE/AFKF hybrid algorithm
The process model and measurement model are 

represented [24, chapter 4] as:

(1)

(2)
where the state vector xk∈Rn, process noise vector 
wk‍∈‍Rn, measurement vector zk∈Rm, and measurement 
noise vector vk∈Rm. In Eqs. (1) and (2), both the vectors 
wk‍ and vk are zero mean Gaussian white sequences 
having zero cross-correlation with each other:

(3)

(4)

(5)
where Qk is the process noise covariance matrix, Rk 
is the measurement noise covariance matrix, F is the 
state transition matrix, E [.] represents expectation 
and superscript “T” denotes matrix transpose. From 
the measured zk and the predicted measurement 
ẑk

+=Hkxk
+ based on the updated filter states xk

+, the 
residuals sequence is defined as vk=zk‑ẑk

+. Also, the 
theoretical covariance matrix of the residual sequence, 
developed in [16], is given by:

(6)
Defining Ĉvk

 as the statistical sample variance 
estimate of Cvk

, matrix Ĉvk
 can be computed by 

averaging inside a moving estimation window of size 
N:

(7)

where N is the number of samples (usually referred to 
the window size); j0=k‑N+1 is the first sample inside 
the estimation window. The window size N is chosen 
empirically to give some statistical smoothing.

The block diagram of RAE/AFKF hybrid method 
and further details regarding the residual-based 
adaptive tuning system loop are illustrated as a flow 
chart in Fig. 5.

where Pk is the error covariance matrix defined by 
E[(xk‑x̂k)‍(xk‑x̂k)

T], in which x̂k is an estimation of the 

Fig. 5. Block Diagram of RAE/AFKF for an Adaptive 
Estimation

system state vector xk, and the weighting matrix Kk is 
generally referred to as the Kalman gain matrix. Also, 
the value 0<α≤1 is determined empirically through 
computer simulation.

4- Mathematical modeling
In this section, linear differential equations 

of the INS are derived and are presented as the 
process model. Also, the measurement model based 
on the difference between the radar and the INS 
measurements is obtained.

4- 1- Process modeling
The tangent coordinate frame (t-frame) is defined 

to be an earth-fixed which is aligned with a geographic 
frame at the fixed location missile launcher on the 
earth. In this system, the navigation equations are [25, 
chapter 3]:

(8)

(9)

(10)
where ωit

t is the turn rate of the earth expressed in the 
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t-frame:

(11)
Lf, Ω and fb represent latitude of the missile 

launcher location, earth’s rate, and the specific force 
in the missile body frame, respectively. Also ωtb

b is 
the turn rate of the body with respect to the t-frame; 
Ωtb

b is the skew-symmetric form of ωtb
b, Cb

t which is 
a direction cosine matrix to transform the measured 
specific force vector to navigation axes (t-frame) and 
gl

t represents the gravity field vector.
The linearized differential Eqs. (8) to (10) are:

(12)

(13)

(14)

(15)

(16)

where G and gn are the gravity gradient matrix 
and the gravity vector referenced in the local level 
geographic frame (n-frame), respectively. Although 
G may be negligible for a low cost or tactical grade 
INS, in Appendix B a new model for G is derived. δrt 
and δvt are the INS position and velocity errors, and 
ϕ is the body-to-navigation attitude error. ε is defined 
as the error vector in the transformation between the 
radar face and navigation coordinate frames. The 
components of ε are the misalignment errors between 
them as shown in Fig. 6. Superscripts or subscripts t, 
R and b denote the tangent, radar and body frames, 
respectively. wa and wg are accelerometers and gyros 
noise vector. Eq. (12) in discrete-time domain takes 
the form Eq. (1) using the error state vector expressed 
in component form as x=[δrt‍ ‍δvt‍ ‍ϕ‍ ‍ε‍]‍T.

4- 2- Measurement modeling
The radar outputs are combined with INS positions 

to form a measurement for processing in an onboard 

Fig. 6. Radar, navigation and body frames, background 
image courtesy Raytheon company copyright© 2002

Kalman filter algorithm. The difference between the 
radar and INS measurements in the navigation frame 
t is expressed as:

(17)

(18)

where, the radar provides measurements in the polar 
coordinate system, i.e. the  measurements of range, R, 
elevation, Θ, and bearing, Ψ.

Cartesian quantities may be expressed in terms of 
the polar coordinates as follows:

(19)

Expanding Eq. (17) about a nominal position r 
and neglecting products of error quantities yields:

(20)

where

(21)

(22)

(23)

v represents the error in the radar measurements. 
v is assumed to be a zero-mean, Gaussian white noise 
process with the covariance matrix R. CR

t is a known 
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direction cosine matrix between the radar frame 
and the navigation axes (t-frame). In this research, 
the matrix CR

t is assumed time-invariant due to the 
fixed ground base of the radar station and the missile 
launcher.

5- Simulation studies
In this section, firstly the flight trajectory needed 

for navigation simulation is introduced. Then, the 
specifications of inertial sensors and the tracking 
radar are presented. Finally, the simulation results of 
INS/Radar adaptive integration navigation system are 
displayed and discussed.

5- 1- Flight trajectory
Fig. 7 illustrates the representative scenario used 

in the simulation analyses. Over the period of flight, 
the missile under proportional guidance laws follows 
a boost phase and intercepts a maneuvering target. 
The missile’s integration inertial navigation system 
before second 4 is in the INS only mode and after 
receiving the radar data in the second 4 switches to 
INS/Radar mode.

5- 2- Sensor specifications
The low- cost inertial sensors specifications of INS 

are presented in Table 1. For the radar measurements 
simulation, we use the information given in Figs. 2 
and 3. But, the design of an extended Kalman filter 
for the INS/Radar integration needs the fixed radar 
measurements specifications which are listed in Table 
1. Also, owing to preliminary alignment between the 
ground-fixed radar frame and navigation frame, it is 
supposed that the misalignment ε is negligible.

Fig. 7. The missile trajectory

Table 1. Inertial sensor and radar measurement 
specifications

Specification Value (1σ)

Accelerometer In-Run Bias , mg 1

Accelerometer Noise Density, 
/g Hzµ

110

Gyro In-Run Bias, deg/hr 12
Gyro Noise Density, ( )/ /s Hz° 0.015

Radar Azimuth Measurement 
Noise, deg

0.15

Radar Elevation Measurement 
Noise, deg

0.15

Radar Range Measurement 
Noise, m

12

Radar Face to Nav. Frame 
Misalignment, deg

~ 0

Radar data uplink rate, Hz 1

5- 3- Simulation results
Time domain Monte Carlo, MC, and the 

simulations of the INS/Radar integrated navigation 
system are carried out to compare the performance 
of RAE/AFKF, EKF and a new definition filter under 
the title of ideal EKF, IEKF. In fact, the EKF and 
IEKF display more or less two boundaries in the 
simulation results for evaluating the performance 
of RAE/AFKF. In the IEKF, unlike RAE/AFKF and 
EKF, it is supposed that the true radar measurements 
accuracy in every range conforming to Figs. 2 and 3 is 
known and the measurement noise covariance matrix 
of the filter is improved in every second based on this 
existing and virtual information. In other words, the 
ideal EKF can be equal to an adaptive EKF whose 
matrix R is only adapted and its estimation about R 
is definitely precise, accurate and similar to the real 
radar measurements accuracy, i.e. Figs. 2 and 3. 
Hence, the IEKF represents how good the navigation 
performance can be if such excellent information 
about the accuracies of the radar measurements is 
estimated and provided for the EKF disregard of 
the estimation method. Therefore, this virtual filter 
highlights the capacity of adaptive filters in the 
performance enhancement of INS/Radar integration 
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navigation system.
The simulation results described below, show the 

standard deviations (STD) of the attitude and position 
errors. Each set of results has been obtained from a 
batch of 100 MC simulations.

Figs. 8 to 10 illustrate the standard deviation of 
in-flight alignment errors. These results explain that 
the RAE/AFKF has the superior performance in 
comparison with the EKF in accuracy and convergence 
rate. If there is the attitude error requirement of 0.2 
degree (1σ), RAE/AFKF relatively satisfies it, but 
EKF fails to meet this supposed requirement. As 
shown in Figs. 8 to 10, the convergence speed of 
the heading and pitch alignment error is faster than 
those of bank alignment error. These differences are 
due to the dissimilar observability of these errors in 
data fusion process. As shown in Figs. 10, near the 
end of flight time, the error curves approach nearly 
to the same error value. This approach is due to the 
accelerations profile of the interceptor missile.

Fig. 10. STD of heading error based on MC simulation: a) all data and b) zoomed portion

Fig. 9. STD of pitch attitude error based on MC simulation: a) all data and b) zoomed portion

Fig. 8. STD of bank attitude error based on MC 
simulation
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The standard deviation of position errors is 
presented in Figs. 11 to 13. These results show 
that the RAE/AFKF in comparison with the EKF 
considerably provides more accurate navigation. 
Figs. 8 to 13 indicate that until nearly second 50, the 
performance of IEKF in accuracy and convergence 
rate is  better than that of RAE/AFKF. It means that 
the accuracy of  R-adaptation in the RAE/AFKF 
is not sufficient. However, after second 50, the 
navigation and alignment accuracy relevant to RAE/
AFKF represent a noticeable preference over IEKF. 
It implies that the  R-adaptation in an adaptive INS/
Radar integrated navigation system is necessary for the 
navigation and alignment performance improvement 
against the radar measurements uncertainty, it but is 
not sufficient.

From the comparison of EKF and ideal EKF 
results in Figs. 8 to 13, it can be found that a proper 
R‑adaptation in an adaptive INS/Radar integrated 

Fig. 13. STD of Z position error based on MC simulation

Fig. 12. STD of Y position error based on MC simulation

Fig. 11. STD of X position error based on MC simulation

navigation system offers an effective tool to  
compensate for  our insufficient prior information 
about the radar measurements accuracies and enhance  
the navigation and in-flight alignment performances 
as a result of the compensation. Nevertheless, in spite 
of the true R‑adaptation in IEKF, the position error of 
navigation system using IEKF in final seconds is more 
than that of EKF as seen in Fig. 12. It denotes that the 
navigation error can be improved by the addition of 
the other adaption like P‑adaption or Q‑adaption.

6- Conclusions
In this paper, a new hybrid adaptive filter based on 

two concepts of residual-based adaptive estimation 
and adaptive fading Kalman filter is proposed for 
the inertial navigation system/radio detection and 
ranging (INS/Radar) integrated navigation system. 
The Monte Carlo simulation results show that the 
presented algorithm is effective enough to improve 
the in-flight alignment and navigation performance in 
the face of the unknown and highly range-dependent 
accuracy of the tracking radar measurements. 
The proposed scheme is superior compared to the 
extended Kalman Filter and offers a possibility 
that the in-flight alignment may be achieved within 
a relatively short period of time. Also, this new 
adaptive filter puts forward a capacity that the low-
cost INS/Radar integration system without aiding 
global navigation satellite system signals (e.g. Global 
Positioning System or GPS) can be used throughout 
the interceptor missile’s mission.

7- Appendix A
Thermal noise errors of the radar angle and range 
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measurements are random variables with the standard 
deviations given by respectively in degrees and 
meters [14, chapter 10], [15, chapters 4, 6]:

(A.1)

(A.2)

where the free-space, and single-pulse signal-to-noise 
ratios (S/N) are determined using the radar range 
equations [14, chapter 3], [17, chapter 1]:

(A.3)

The basic and equivalent glint error standard 
deviations in angle and range for uniform scattered 
over a target span L are given by σθG

=Lx/3R and 
σRG

=Lr/3, respectively in degrees and meters [17, 
pages 115-118].

8- Appendix B
The gravity vector in t-frame in terms of the 

gravity vector in the local level geographic frame, 
n-frame, is:

(B.1)
where

(B.2)
Cn

t is a direction cosine matrix from n-frame to 
t-frame. The matrix Cn

t has been explained in detail 
in [26, page 37]. By differentiating (B.1) respect to rt, 
the gravity gradient matrix G is obtained as

(B.3)

where

(B.4)

and for the tactical missiles, i.e. regional range, it can 
be supposed that

(B.5)

Applying (B.4) to (B.3) gives:

(B.6)
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