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ABSTRACT 

Electrostatic potential as well as the local volume charge density are computed for a macromolecule by 

solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, 

our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, 

are compared with the existing analytical solution and good agreement is found. As a macromolecule has a 

rod-like shape with a finite length, a much more real case is considered, which leads to a two dimensional 

PBE. Furthermore, it is demonstrated that the potential and charge density decrease as the distance from the 

axis of the macromolecule increases. Moreover, it is concluded that the absolute value of the electrostatic 

field obtained from the nonlinear PBE subject to the boundary condition with a fixed charge differs from that 

of the linear PBE at fixed potential by an order of magnitude in the vicinity of the finite rod-like 

macromolecule. On the other hand, excellent agreement is observed between the electric fields calculated 

from the aforementioned equations at far distances. 
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1. INTRODUCTION 

Electric charges and electrostatic interactions are 

ubiquitous in soft matter and biological systems [1,2], 

referred to as muscle, membrane, and protoplasm, which 

are generally regarded as organized polyelectrolytes. 

Polyelectrolytes exhibit various interesting phenomena 

due to their dual character as highly charged electrolytes 

and flexible chain molecules. Polyelectrolytes are 

macromolecules having many ionizable groups, which 

often acquire surface charges when dissolved in a polar 

solvent like water. This is usually due to dissociation of 

surface chemical groups, which leaves permanent charges 

on macromolecular surfaces and releases oppositely 

charged microscopic counter ions into the solution [3,4]. 

The counter ions, which in accordance with the 

Boltzmann distribution are attracted into the region of 

highest mean potential, are more or less trapped and form 

the fraction of „the bound‟ ions. Although radially fixed 

upon the polymer framework, these ions still have a 

certain freedom to move in the longitudinal direction of 

the molecule
 
[5].  

Soft materials are easily deformed or rearranged by 

interaction potentials in comparison with the thermal 

energy. Thus, it becomes clear that electrostatic 

interactions, which are typically long-ranged and strong, 

constitute a prominent factor in determining the behavior 

and properties of soft materials. This makes charged 

materials to be considered as appropriate candidates for 

many technological applications and on the other hand, a 

challenging subject for fundamental research in 

interdisciplinary sciences [6]. For instance, 

polyelectrolytes have been identified as good candidates 

for resistive type humidity sensors due to their high 

sensitivity, quick response and low cost [7]. Absorption 

of water into the insulating polymer film changes its 

dielectric constant, and hence, modulating its capacitance. 

As dielectric constant of the absorbed water is high, the 

capacitance of these materials increases with humidity. 

Capacitive-type sensors are in general more expensive 

than the resistive-type ones, but on the other hand, they 

reveal more attractive characteristics [8]. These 

properties and applications of soft materials, can motivate 

the analysis regarding this field. 

Electrostatic interactions between biological 

molecules in solutions have generally been evaluated 

using the PBE, which gives the static equilibrium electric 

fields with reasonable accuracy [9-11]. One can find in 

the literature that the PBE has been linearized to 

eliminate the exponential terms in order to make the 

equation more convenient to solve [12]. The Debye 

length [13] appears as one of the coefficients in the 

linearized PBE, the so-called Debye-Huckel equation 

[10,12]. Both the linear and non-linear forms of the PBE 

give adequate descriptions regarding the steady-state 

electrostatic solutions. On the other hand, the effects of 

external electric fields on polyelectrolytes have been 

extensively investigated by various experimental and 

theoretical procedures. The effects of the interaction of 

radio frequency and microwave radiations with biological 

tissues can be considered as the result of various 

phenomena. The physical laws of electromagnetic field 

theory, reflection, diffraction, dispersion, interference, 

optics, and quantum effects, should be applied in order to 

investigate and explain the observed phenomena. This is 

true in general for the whole spectrum of electromagnetic 

radiation [14]. 

The nonlinear PBE was solved using the Newton–

Krylov iterations coupled with pseudo-transient 

continuation [15]. The potential was used to compute the 

electrostatic energy and evaluate the force on a user-

specified contour. Potentials and energies of charged 

spheres and plates were computed and the data were 

compared with the results of the analysis. Chapot et al. 

[16] have written the nonlinear PBE as a self consistent 

equation for a highly charged finite size cylinder. The 

solution has been obtained by solving this self-consistent 

equation iteratively using the Green‟s function formalism.  

The purpose of the present work is to solve the PBE 

numerically for a rod-like macromolecule having a finite 

length in the salt-free case via the FEM. This method can 

be described as an adaptation of the variational method to 

the problems with complex geometries and 

inhomogeneous media. Its variational property implies 

that the solution is accurate to, for example, the second 

order even if the modeling is accurate to the first order. 

This translates to coarse discretization for the same 

accuracy and reduces the computational load. The 

systematic generality of the method makes it possible to 

construct general-purpose computer programs for solving 

a wide range of problems. Hence, in recent years, with 

the rapid development of applied mathematics and 

computer science, the FEM is widely used in the fields of 

mathematics, engineering, and so on. The finite element 

analysis of any problem involves basically four steps 

[17]: discretizing the solution region into a finite number 

of sub regions or elements, deriving governing equations 

for a typical element, assembling of all elements in the 

solution region, and solving the system of equations 

obtained. 

The analysis is focused on the behavior of the 

electric potential and charge density distribution under 

electrostatic conditions for a two-dimensional model of 

the problem. Furthermore, our numerical computation 

shows a significant discrepancy between our results and 

the corresponding data [18]. Moreover, the solution of the 

nonlinear PBE based on the fixed charge boundary 

condition for the electric field has been compared with 

that of the linear PBE using the fixed potential boundary 

condition. In this case, the analysis is carried out 

considering the Debye length to be specified in the 

nanometer scale, which is much smaller than other 

dimensions of the system. It is worth noting that 

numerical solution of the PBE for a rod-like 

macromolecule with a finite length using the FEM has 

not been reported in the literature previously based on the 

presented model. This article is organized as follows: The 

mathematical formalism and model are given in section 2. 
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The numerical results are represented in section 3. 

Finally, the paper is ended by a conclusion in section 4. 

2. MATHEMATICAL FORMALISM AND MODEL 

Although in this paper the model is constructed in 

analogy to DNA double helices, modeling the DNA 

double helix is not carried out in details. Without loss of 

generality, it is assumed that the charged polyelectrolyte 

is situated in the axis of a coaxial electro-neutral cylinder 

containing counter ions equivalent to the charges on the 

polyion. As a consequence, the cylinder containing the 

polyion and its counter ions is considered to be an 

uncharged entity in an electrically neutral environment 

i.e., the solvent. The model considers the macroion to be 

a rod with a finite length. The common symmetry axes of 

the macromolecule and the unit cell are assumed to be 

placed along the z-axis.  

The local potential is given through the Poisson equation: 

 
 2

,
, ,

r z
r z




                                   (1) 

where  ,r z  is the charge density distribution. The 

quantity   is permittivity of the medium. The local 

charge density distribution  ,r z  is given by the 

Boltzmann equation  

   , , ,r z en r z                                            (2) 

where e denotes the electron charge and  ,n r z  stands 

for the counter ion distribution, which is related to the 

electrostatic potential  ,r z  by the Boltzmann factor 

in the form [19]:   

   0

( , )
, exp ,

B

e r z
n r z n R

k T


 

 
 
 

                      (3) 

where 0( )n R  is the average counter ion concentration. 

As the mutual repulsion among the bound ions was 

neglected in the Schwarz‟s model, the distribution of the 

bound ions is Gaussian around the center of polyion in 

the absence of an external electric field [20]. It should be 

noted that, it is not quite simple to obtain the potential 

due to the nonlinearity nature of the equation. 

In order to solve the PBE, the screening constant K

, Bjerrum length Bl , the charge parameter   and the 

reduced electrostatic potential ( , )y r z should be defined. 

The screening potential K  is defined as follows: 

2

08 ( ),BK l n R  (4) 

where Bl  denotes the Bjerrum length and is given by: 

2

4
.B

B

e
l

k T
  (5) 

 

The charge parameter also known as the Manning 

parameter is a measure of the charges on the surface of 

the macro ions: 

,
Bl

b
                                                                  (6) 

where b  is the distance between the two ionic groups. 

Using the aforementioned parameters the reduced 

electrostatic potential ( , )y r z  is determined by the 

following normalized relation 

 
 ,

, .
B

e r z
y r z

k T


                                              (7)  

Therefore, it is a dimensionless quantity Combining the 

Poisson equation with the Boltzmann factor, the PBE can 

be written as 

    
2 2

2

2 2

1
, exp , .y r z K y r z

r rr z

  
  

 

 
 
 

     (8) 

Eq. (8) is a non-linear partial differential equation of the 

second order. The solution of this equation has been 

obtained using the Neumann boundary conditions in 

radial direction as well as the continuity conditions in the 

longitudinal direction. At large distances from the 

macromolecule, i.e. the distances typically larger than the 

Debye length, the electrostatic potential becomes small 

and the nonlinear PBE, namely eq. (8), reduces to the 

linear PBE. This can be justified for surface potentials 

which are smaller than 25 mV at room temperature. By 

expanding the right hand side of eq. (8) to the first order 

in ( , )y r z the following equation is obtained: 

   
2 2

2

2 2

1
, 1 ( , )y r z K y r z

r r r z

  
   

  

 
 
 

        (9)  

In the model, a cylindrical polyion is situated in the 

axis of a coaxial cylinder. The origin is located at the 

center of polyion, and the z  axis is along the symmetry 

axis of the cylinder. For convergence test and to achieve a 

sufficient accuracy, the selected triangular mesh in FEM 

must be considered relatively small. The number of 

degrees of freedom is 3197. For simplicity, a uniform 

mesh in the geometry was used, which consists of 823 

points and 1552 elements for the nanometer scale. Also, 

the number of boundary elements is 132. On the other 

hand, for the micrometer scale (i.e. at far distances) the 

number of degrees of freedom is considered to be as 

6833. Also, mesh consists of 1781 points and 3272 

elements. The size of the meshes is found to be sufficient, 

as its reduction to lower values doesn‟t noticeable change 

the final results. Also, the number of boundary elements 

is 328.  
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3. NUMERICAL RESULTS 

 In the numerical calculations, 16 negative charges 

were considered with equal separation of 0.715 nm along 

the symmetry axis of the cylinder. The radius and length 

of the cylinder were selected as 0.5 nm and 12 nm, 

respectively. In our analysis, the radius of the unit cell of 

the system was chosen as 6 nm, whereas its length was 

considered to be as 24 nm. The diameter of the counter 

ions was taken equal to 0.3b   nm. The solvent was 

treated as a dielectric continuum with the relative 

permittivity of pure water, namely 78.3r   at 

298KT  , and dielectric discontinuity between the 

solvent and DNA cylinder was neglected. The average 

counter ion concentration was considered as 
4

76.8 10 M


 [20,21]. 

It is worth noting that, by solving the exact solution 

of the PBE for the two boundary conditions, a set of two 

coupled differential equations for   and MR  has been 

obtained in the literature [18,22]. In the equations, the 

parameters   and MR  denote the integration constant 

and the Manning radius, respectively [18,22]. These 

equations were solved using the Newton‟s iteration 

method with high accuracy. Subsequently, by substituting 

the parameters in the exact solution [18,23,24], two peaks 

were appeared around 1nmr   and 3nmr  . It is 

notable that, it is not expected to see the peaks in the plot 

conceptually. It is concluded that, the values of  and

MR   obtained from the aforementioned analysis are not 

quite correct. Afterwards, the correct value of  was 

calculated using the screening potential which can be 

written as 

2

2

0

4(1 )
.K

R


                                             (10) 

To calculate MR , as the second parameter, the 

quantity   was substituted in the corresponding 

equation for MR  as follows [18,22]  

M

1 1
exp arctan .R a



 




  
  

  
                     (11) 

In the aforementioned equation, a  and   denote 

the radius of the macromolecule and the charge 

parameter, respectively. It should be noted that, the 

correct values of   and MR  are obtained as 1i  , 

and 
20 10

1.2915 10 2.0043 10i
 

     from our 

computations, respectively. Whereas, their corresponding 

values are computed from the equations reported in Ref. 

[18], to be as 2.6727  and 8.1062 , respectively. As 

mentioned, the main objective of this work is to solve the 

PBE numerically for a finite-length macromolecule. For 

this purpose, eq. (8) has been solved by using the FEM. 

In Fig. 1, the reduced electrostatic potential has been 

illustrated for a macromolecule with a finite length. As a 

result shown in the figure, potential is maximum at the 

center and decreases by increasing distance from the axis 

of the macromolecule. 
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1. The dimensionless reduced electrostatic potential versus 

distance from axis of the macromolecule in the planes z = 7, 

8 and 9 nm for a finite rod-like macromolecule, which 

corresponds to two variable PBE 
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Fig. 2. Local volume charge density as a function of distance 

from axis of the macromolecule in the planes z = 7, 8 and 9 

nm for a finite rod-like macromolecule, which corresponds 

to two variable PBE 

Afterwards, by substituting ( , )y r z  in eqs. (2) and 

(3), the local charge density distribution ( , )r z  can be 

computed as illustrated in Fig. 2. As expected, one can 

see the same result for the volume charge density 

depicted in Fig. 2. The charge density decreases, as the 

value of z increases. For more details, the reduced 

electrostatic potential has been plotted as a function of z 

for r = 0.5 nm and r = 6 nm in Fig. 3. In the particular 

case of a rigid rod-like molecule or nearly completely 

stretched polymer coil, theoretical calculations were 

made in the literature [23,24]. It was demonstrated that in 

the absence of added salt, the mean electric potential 

around the polyelectrolyte molecule decreases rapidly in 

the radial direction [23,24]. As illustrated in Fig. 4, our 

numerical results were compared with the analytical 
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solution for a PBE with one variable [18], which 

corresponds to an infinite charged rod and good 

agreement was found. 

In Fig. 5, the nonlinear PBE has been solved with 

defined surface charge density, and our data have been 

compared with those obtained from the linear PBE 

having a fixed potential on the surface of the cylinder. It 

is important to note that the agreement between these two 

solutions is not obvious a priori.  

 

r = 0.5 nanometer [nm]R
ed

u
ce

d
 e

le
ct

ro
st

at
ic

 p
o
te

n
ti

al

6

7

8

9

10

11

12

13

14

r = 6 [nm]

z [nanometer]

-15 -10 -5 0 5 10 15

R
ed

u
ce

d
 e

le
ct

ro
st

at
ic

 p
o
te

n
ti

al

6.4

6.6

6.8

7.0

7.2

7.4

7.6

 

Fig. 3. The dimensionless reduced electrostatic potential as a 

function of z at: (a) r = 0.5 nm and (b) r = 6 nm for a finite 

rod-like macromolecule, which corresponds to two variable 

PBE 

Indeed for finite rod-like cylinders, the solution of 

the linear (or nonlinear) PBEs is quite different 

depending on the boundary condition under 

consideration, namely fixed surface charge, or fixed 

surface potential (at the macromolecule surface). This 

difference originates in particular in the so-called edge 

effects associated with the constant potential boundary 

condition. The fact that an agreement may be found 

between the nonlinear PB with fixed charge and the linear 

PB with fixed surface potential is a non trivial point 

[25,26]. 
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Fig. 4 The dimensionless reduced electrostatic potential 

obtained from the analytical solution [18] compared with 

our numerical method for an infinite charged rod, which 

corresponds to one variable PBE  
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Fig. 5. The dimensionless reduced electrostatic potential as a 

function of distance from axis of the macromolecule in the 

plane z = 7 nm for the nonlinear PBE with the fixed surface 

charge density as well as the linear PBE with the fixed 

potential on the surface of the finite cylinder, which 

corresponds to two variable PBE  

 

In Fig. 6, the absolute values of gradient of the 

electrostatic potential obtained from the nonlinear and 

linear PBEs have been displayed as a function of 

distance. As shown, the electric fields obtained from the 

aforementioned equations differ by an order of magnitude 

in the vicinity of the finite rod-like macromolecule. On 

the other hand, two curves remarkably superimpose at far 

distances from the axis of the macromolecule (the dotted 

line is hardly distinguishable from the solid one). 
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Fig. 6. Electric field as a function of distance from axis of the 

macromolecule in the plane z = 7 nm obtained from the 

nonlinear PBE with the fixed surface charge density as well 

as the linear PBE with the fixed potential on the surface of 

the finite cylinder, which corresponds to two variable PBE  

4. CONCLUSION 

In this work, the electrostatic potential and the local 

charge density have been calculated by solving a two 

dimensional PBE for a macromolecule with a finite 

length based on the FEM. For more details, the plot of the 

reduced electrostatic potential has been presented as a 

function of z for r = 0.5 nm and r = 6 nm. As shown, the 

reduced electrostatic potential is maximum at the center 

of the macromolecule ( 0)z  . Moreover, our results are 

in agreement with the analytical solution for a one 

dimensional PBE with radial variable. As expected, in the 

particular case of an infinitely long charged rod, in the 

salt-free case, a decrease of mean electric potential was 

observed around the macromolecule in the radial 

direction. Furthermore, the solution of the nonlinear PBE 

for the electric field associated to a fixed charge boundary 

condition was compared with its linear counterpart at a 

fixed potential boundary condition. It is concluded that, 

the nonlinear PBE solution at fixed charge for the electric 

field coincides with the linear PBE one at fixed potential 

at large distances from the macromolecule. However, 

DNA is a polyelectrolyte with a rigid rod-like shape, and 

the obtained results are of particular importance in the 

field of bioelectromagnetism. Furthermore, the obtained 

solutions allow us to compute important thermodynamic 

quantities such as osmotic coefficient of polyelectrolytes. 
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